Positive Solutions for a Class of Integral Boundary Value Problem of Fractional q-Difference Equations
Abstract
:1. Introduction
2. Preliminaries on -Calculus
- (i)
- (ii)
3. Main Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Antil, H.; Khatri, R.; Lohner, R.; Verma, D. Fractional deep neural network via constrained optimization. Mach. Learn. Sci. Technol. 2019, 2, 015003. [Google Scholar] [CrossRef]
- Graef, J.R.; Ho, S.S.; Kong, L.; Wang, M. A fractional differential equation model for bike share systems. J. Nonlinear Funct. Anal. 2019, 2019, 1830489. [Google Scholar]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Stability of q-fractional non-autonomous systems. Nonlinear Anal. Real World Appl. 2013, 14, 780–784. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North–Holland Mathematics Studies, 204; Elsevier Science: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Goodrich, C.S.; Peterson, A.C. Discrete Fractional Calculus, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Atici, F.M.; Sengul, S. Modeling with fractional difference equations. J. Math. Anal. Appl. 2010, 369, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Danbury, CT, USA, 2006. [Google Scholar]
- Mall, S. Artificial neural network approach for solving fractional order applied problems. In New Paradigms in Computational Modeling and Its Applications; Academic Press: Cambridge, MA, USA, 2021; pp. 163–175. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Agarwal, R.P. Certain fractional q-integrals and q-derivative. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Annaby, M.; Mansour, Z. q-Fractional Calculus and Equations; Springer: New York, NY, USA, 2012. [Google Scholar]
- Abdel-Gawad, H.I.; Aldailami, A.A. On q-dynamic equations modelling and complexity. Appl. Math. Model. 2010, 34, 697–709. [Google Scholar] [CrossRef]
- Rajković, P.M.; Marinković, S.D.; Stanković, M.S. Fractional integrals and derivatives in q-calculus. Appl. Anal. Discret. Math. 2007, 1, 311–323. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Allouch, N.; Graef, J.R.; Hamani, S. Boundary Value Problem for Fractional q-Difference Equations with Integral Conditions in Banach Spaces. Fractal Fract. 2022, 6, 237. [Google Scholar] [CrossRef]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Feng, W.; Zhang, G.; Chai, Y. Existence of positive solutions for second-order differential equations arising from chemical reactor theory. Discrete Contin. Dyn. Syst. 2007, 2007, 373–381. [Google Scholar]
- Cabada, A.; Hamdi, Z. Nonlinear fractional differential equations with integral boundary value conditions. J. Appl. Math. Comput. 2014, 228, 251–257. [Google Scholar] [CrossRef]
- Webb, J.R.L. A class of positive linear operators and applications to nonlinear boundary value problems. Topol. Methods Nonlinear Anal. 2012, 39, 221–242. [Google Scholar]
- Ferreira, R.A.C. Positive solutions for a class of boundary value problems with fractional q-differences. Comput. Math. Appl. 2011, 61, 367–373. [Google Scholar] [CrossRef]
- Ferreira, R.A.C. Nontrivial solutions for fractional q-difference boundary value problems. Electron. J. Qual. 2010, 70, 1–10. [Google Scholar]
- Li, X.; Han, Z.; Li, X. Boundary value problems of fractional q-difference Schringer equations. J. Appl. Math. Lett. 2015, 46, 100–105. [Google Scholar] [CrossRef]
- Cui, Y.Q.; Kang, S.G.; Chen, H.Q. Uniqueness of Solutions for an Integral Boundary Value Problems with Fractional q-differences. J. Appl. Math. Comput. 2018, 8, 524–531. [Google Scholar]
- Guo, D. Nonlinear Functional Analysis, 2nd ed.; Science & Technology: Jinan, China, 2000. [Google Scholar]
- Nonnenmacher, T.F.; Metzler, R. On the Riemann–Liouville fractional calculus and some recent applications. Fractals 1995, 3, 557–566. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, G. New Fixed Point Theorems on Order Intervals and Their Applications. Fixed Point Theory Appl. 2015, 2015, 218. [Google Scholar] [CrossRef] [Green Version]
- Jackson, F.H. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.; Zhang, Y.; Chen, H.; Feng, W. Positive Solutions for a Class of Integral Boundary Value Problem of Fractional q-Difference Equations. Symmetry 2022, 14, 2465. https://doi.org/10.3390/sym14112465
Kang S, Zhang Y, Chen H, Feng W. Positive Solutions for a Class of Integral Boundary Value Problem of Fractional q-Difference Equations. Symmetry. 2022; 14(11):2465. https://doi.org/10.3390/sym14112465
Chicago/Turabian StyleKang, Shugui, Yunfang Zhang, Huiqin Chen, and Wenying Feng. 2022. "Positive Solutions for a Class of Integral Boundary Value Problem of Fractional q-Difference Equations" Symmetry 14, no. 11: 2465. https://doi.org/10.3390/sym14112465
APA StyleKang, S., Zhang, Y., Chen, H., & Feng, W. (2022). Positive Solutions for a Class of Integral Boundary Value Problem of Fractional q-Difference Equations. Symmetry, 14(11), 2465. https://doi.org/10.3390/sym14112465