The Effect of Spinal Asymmetries on Physical Fitness Parameters in Young Elite Soccer Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Spinal Asymmetry Evaluation
2.4. Anthropometrics and Flexibility Evaluations
2.5. Neuromuscular Explosiveness and Isokinetic Dynamometer Evaluations
2.6. Statistical Analysis
3. Results
4. Discussion
Practical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doncaster, G.; Unnithan, V. Between-Game Variation of Physical Soccer Performance Measures in Highly Trained Youth Soccer Players. J. Strength Cond. Res. 2019, 33, 1912–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fransson, D.; Vigh-Larsen, J.F.; Fatouros, I.G.; Krustrup, P.; Mohr, M. Fatigue Responses in Various Muscle Groups in Well-Trained Competitive Male Players after a Simulated Soccer Game. J. Hum. Kinet. 2018, 61, 85–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, C.; Archer, D.; Hogg, B.; Bush, M.; Bradley, P. The evolution of physical and technical performance parameters in the English Premier League. Int. J. Sports Med. 2014, 35, 1095–1100. [Google Scholar] [CrossRef] [PubMed]
- Ekstrand, J.; Lundqvist, D.; Davison, M.; D’Hooghe, M.; Pensgaard, A.M. Communication quality between the medical team and the head coach/manager is associated with injury burden and player availability in elite football clubs. Br. J. Sports Med. 2019, 53, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.C.; Larruskain, J.; Gil, S.M.; Lekue, J.A.; Baumert, P.; Rienzi, E.; Moreno, S.; Tannure, M.; Murtagh, C.F.; Ade, J.D.; et al. An injury audit in high-level male youth soccer players from English, Spanish, Uruguayan and Brazilian academies. Phys. Ther. Sport 2020, 44, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.; Nourasteh, A.; Daneshmandi, H. Comparison of Spinal Column Curvatures between Master Football Players and Their Non-Athletes Peers. Int. J. Sport Stud. 2014, 4, 338–342. [Google Scholar]
- Całka-Lizis, T.; Jankowicz-Szymańska, A.; Adamczyk, K. Body posture in schoolchildren undergoing regular football training compared to their peers. Pol. J. Sports Med. 2008, 24, 224–230. [Google Scholar]
- Jackson, L.R.; Purvis, J.; Brown, T. The effects of postural and anatomical alignment on speed, power, and athletic performance in male collegiate athletes: A randomized controlled trial. Int. J. Sports Phys. Ther. 2019, 14, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Daga, F.A.; Panzolini, M.; Allois, R.; Baseggio, L.; Agostino, S. Age-Related Differences in Hamstring Flexibility in Prepubertal Soccer Players: An Exploratory Cross-Sectional Study. Front. Psychol. 2021, 12, 5002. [Google Scholar]
- Corso, M. Developmental changes in the youth athlete: Implications for movement, skills acquisition, performance and injuries. J. Can. Chiropr. Assoc. 2018, 62, 150. [Google Scholar]
- Li, X.; Zhang, L. Sports Rehabilitation of Patients with Scoliosis Based on Intelligent Data Collection Technology under the Background of Artificial Intelligence. In Proceedings of the 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture, Manchester, UK, 23–25 October 2021; ACM: New York, NY, USA, 2021; pp. 1131–1136. [Google Scholar] [CrossRef]
- Wolpert, L. Development of the asymmetric human. Eur. Rev. 2005, 13, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Czaprowski, D.; Stoliński, Ł.; Tyrakowski, M.; Kozinoga, M.; Kotwicki, T. Non-structural misalignments of body posture in the sagittal plane. Scoliosis Spinal Disord. 2018, 13, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grabara, M. Analysis of Body Posture between Young Football Players and their Untrained Peers. Hum. Mov. 2012, 13, 120–126. [Google Scholar] [CrossRef]
- Barczyk-Pawelec, K.; Rubajczyk, K.; Stefańska, M.; Pawik, Ł.; Dziubek, W. Characteristics of Body Posture in the Sagittal Plane in 8–13-Year-Old Male Athletes Practicing Soccer. Symmetry 2022, 14, 210. [Google Scholar] [CrossRef]
- Bernardes Marques, V.; Menezes Medeiros, T.; de Souza Stigger, F.; Yuzo Nakamura, F.; Manfredini Baroni, B. The Functional Movement Screen (FMSTM) in elite young soccer players between 14 and 20 years: Composite score, individual—Test scores and asymmetries and asymmetries. Int. J. Sports Phys. Ther. 2017, 12, 977. [Google Scholar] [CrossRef]
- Rahnama, N.; Lees, A.; Bambaecichi, E. A comparison of muscle strength and flexibility between the preferred and non-preferred leg in English soccer players. Ergonomics 2005, 48, 1568–1575. [Google Scholar] [CrossRef] [PubMed]
- Bona, C.C.; Filho, H.T.; Izquierdo, M.; Ferraz, R. Peak torque and muscle balance in the knees of young U-15 and U-17 soccer athletes playing various tactical positions. J. Sports Med. Phys. Fit. 2017, 57, 923–929. [Google Scholar]
- Lehance, C.; Binet, J.; Bury, T.; Croisier, J.L. Muscular strength, functional performances and injury risk in professional and junior elite soccer players: Muscular strength in soccer players. Scand. J. Med. Sci. Sports 2008, 19, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Rouissi, M.; Chtara, M.; Owen, A.; Chaalali, A.; Chaouachi, A.; Gabbett, T.; Chamari, K. Effect of leg dominance on change of direction ability amongst young elite soccer players. J. Sports Sci. 2016, 34, 542–548. [Google Scholar] [CrossRef]
- Thorborg, K.; Couppe, C.; Petersen, J.; Magnusson, S.P.; Holmich, P. Eccentric hip adduction and abduction strength in elite soccer players and matched controls: A cross-sectional study. Br. J. Sports Med. 2011, 45, 10–13. [Google Scholar] [CrossRef]
- Bussey, M.D. Does the demand for asymmetric functional lower body postures in lateral sports relate to structural asymmetry of the pelvis? J. Sci. Med. Sport 2010, 13, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Ducher, G.; Courteix, D.; Même, S.; Magni, C.; Viala, J.F.; Benhamou, C.L. Bone geometry in response to long-term tennis playing and its relationship with muscle volume: A quantitative magnetic resonance imaging study in tennis players. Bone 2005, 37, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Van Dillen, L.R.; Bloom, N.J.; Gombatto, S.P.; Susco, T.M. Hip rotation range of motion in people with and without low back pain who participate in rotation-related sports. Phys. Ther. Sport 2008, 9, 72–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Turner, A.; Read, P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Hadjicharalambous, M.P.; Kilduff, L.P.; Pitsiladis, Y.P. Brain serotonergic and dopaminergic modulators, perceptual responses and endurance exercise performance following caffeine co-ingested with a high fat meal in trained humans. J. Int. Soc. Sports Nutr. 2010, 7, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svan Blommestein, A. Reliability of Measuring Thoracic Kyphosis Angle, Lumbar Lordosis Angle and Straight Leg Raise with an Inclinometer. Open Spine J. 2012, 4, 10–15. [Google Scholar] [CrossRef] [Green Version]
- Members of the international Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT); Kotwicki, T.; Negrini, S.; Grivas, T.B.; Rigo, M.; Maruyama, T.; Durmala, J.; Zaina, F. Methodology of evaluation of morphology of the spine and the trunk in idiopathic scoliosis and other spinal deformities—6th SOSORT consensus paper. Scoliosis 2009, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Negrini, S.; Donzelli, S.; Aulisa, A.G.; Czaprowski, D.; Schreiber, S.; de Mauroy, J.C.; Diers, H.; Grivas, T.B.; Knott, P.; Kotwicki, T.; et al. 2016 SOSORT guidelines: Orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis Spinal Disord. 2018, 13, 3. [Google Scholar] [CrossRef] [Green Version]
- Hadjicharalambous, M. The effects of regular supplementary flexibility training on physical fitness performance of young high-level soccer players. J. Sports Med. Phys. Fit. 2015, 56, 699–708. [Google Scholar]
- Apostolidis, A.; Mougios, V.; Smilios, I.; Frangous, M.; Hadjicharalambous, M. Caffeine supplementation is ergogenic in soccer players independent of cardiorespiratory or neuromuscular fitness levels. J. Int. Soc. Sports Nutr. 2020, 17, 31. [Google Scholar] [CrossRef]
- Glatthorn, J.F.; Gouge, S.; Nussbaumer, S.; Stauffacher, S.; Impellizzeri, F.M.; Maffiuletti, N.A. Validity and Reliability of Optojump Photoelectric Cells for Estimating Vertical Jump Height. J. Strength Cond. Res. 2011, 25, 556–560. [Google Scholar] [CrossRef] [PubMed]
- Habets, B.; Staal, J.B.; Tijssen, M.; van Cingel, R. Intrarater reliability of the Humac NORM isokinetic dynamometer for strength measurements of the knee and shoulder muscles. BMC Res. Notes 2018, 11, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, R. Meta-Analytic Procedures for Social Research, 2nd ed.; Sage: Newbury Park, CA, USA, 1991. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Mandorino, M.; Figueiredo, A.J.; Cima, G.; Tessitore, A. Predictive Analytic Techniques to Identify Hidden Relationships between Training Load, Fatigue and Muscle Strains in Young Soccer Players. Sports 2021, 10, 3. [Google Scholar] [CrossRef] [PubMed]
- Rubini, E.C.; Costa, A.L.L.; Gomes, P.S.C. The Effects of Stretching on Strength Performance. Sports Med. 2007, 37, 213–224. [Google Scholar] [CrossRef]
- Krishna, H.; Pk, S.; Dhote, C. Comparison between Immediate Effect of Neural Mobilization and Myofascial Release of Suboccipital Muscle on Hamstring Length in Younger Adults—An Interventional Study. Int. J. Sci. Healthc. Res. 2021, 6, 438–445. [Google Scholar] [CrossRef]
- Malmström, E.M.; Olsson, J.; Baldetorp, J.; Fransson, P.A. A slouched body posture decreases arm mobility and changes muscle recruitment in the neck and shoulder region. Eur. J. Appl. Physiol. 2015, 115, 2491–2503. [Google Scholar] [CrossRef]
- Liang, R.; Yip, J.; Fan, Y.; Cheung, J.P.Y.; To, K.T.M. Electromyographic Analysis of Paraspinal Muscles of Scoliosis Patients Using Machine Learning Approaches. Int. J. Environ. Res. Public Health 2022, 19, 1177. [Google Scholar] [CrossRef]
- Ayala, F.; De Ste Croix, M.; Sainz de Baranda, P.; Santonja, F. Acute effects of static and dynamic stretching on hamstrings’ response times. J. Sports Sci. 2014, 32, 817–825. [Google Scholar] [CrossRef]
- Zhang, F.; Yin, X.; Bi, C.; Li, Y.; Sun, Y.; Zhang, T.; Yang, X.; Li, M.; Liu, Y.; Cao, J.; et al. Physical fitness reference standards for Chinese children and adolescents. Sci. Rep. 2021, 11, 4991. [Google Scholar] [CrossRef]
- Coratella, G.; Beato, M.; Schena, F. The specificity of the Loughborough Intermittent Shuttle Test for recreational soccer players is independent of their intermittent running ability. Res. Sports Med. 2016, 24, 363–374. [Google Scholar] [CrossRef] [PubMed]
Intraclass Correlation (ICC) | 95% Confidence Interval (CI) | p Value | |
---|---|---|---|
Scoliometer | 0.988 | 0.981–0.993 | 0.001 |
Inclinometer T1–T2 | 0.987 | 0.979–0.993 | 0.001 |
Inclinometer T12–L1 | 0.995 | 0.991–0.997 | 0.001 |
Inclinometer S2–S3 | 0.995 | 0.991–0.997 | 0.001 |
Spinal Asymmetry | Normal | Asymmetry | ||
---|---|---|---|---|
Kyphotic Posture | Norms: 36–40° (N = 24) | Age: 15.93 ± 1.29 years | Norms: 41–60° (N = 26) | Age: 14.83 ± 1.29 years |
Height: 174.21 ± 7.18 cm | Height: 174.15 ± 6.45 cm | |||
Weight: 67.48 ± 7.29 kg | Weight: 65.60 ± 7.61 kg | |||
Lordotic Posture | Norms: 26–29° (N = 30) | Age: 15.45 ± 1.40 years | Norms: 30–50° (N = 20) | Age: 15.23 ± 1.41 years |
Height: 173.33 ± 6.36 cm | Height: 175.45 ± 7.25 cm | |||
Weight: 65.72 ± 7.24 kg | Weight: 67.67 ± 7.76 kg | |||
Scoliotic Posture | Norms: 0–4° (N = 34) | Age: 15.37 ± 1.41 years | Norms 5–7° (N = 16) | Age: 15.34 ± 1.41 years |
Height: 175.09 ± 5.87 cm | Height: 172.25 ± 8.18 cm | |||
Weight: 67.41 ± 6.98 kg | Weight: 64.58 ± 8.24 kg |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodorou, E.; Christou, M.; Apostolidis, A.; Tryfonidis, M.; Zaras, N.; Hadjicharalambous, M. The Effect of Spinal Asymmetries on Physical Fitness Parameters in Young Elite Soccer Players. Symmetry 2022, 14, 2497. https://doi.org/10.3390/sym14122497
Theodorou E, Christou M, Apostolidis A, Tryfonidis M, Zaras N, Hadjicharalambous M. The Effect of Spinal Asymmetries on Physical Fitness Parameters in Young Elite Soccer Players. Symmetry. 2022; 14(12):2497. https://doi.org/10.3390/sym14122497
Chicago/Turabian StyleTheodorou, Eleni, Marios Christou, Andreas Apostolidis, Marios Tryfonidis, Nikolaos Zaras, and Marios Hadjicharalambous. 2022. "The Effect of Spinal Asymmetries on Physical Fitness Parameters in Young Elite Soccer Players" Symmetry 14, no. 12: 2497. https://doi.org/10.3390/sym14122497
APA StyleTheodorou, E., Christou, M., Apostolidis, A., Tryfonidis, M., Zaras, N., & Hadjicharalambous, M. (2022). The Effect of Spinal Asymmetries on Physical Fitness Parameters in Young Elite Soccer Players. Symmetry, 14(12), 2497. https://doi.org/10.3390/sym14122497