Asymmetry Opinion Evolution Model Based on Dynamic Network Structure
Abstract
:1. Introduction
2. Model
2.1. Model Description
2.2. Property of the Model
3. Evolution of Group Opinions under Asymmetric and Dynamic Network Structure
3.1. Measurement and Indices
3.2. Evolution of Group Views under Dynamic Network Structure
4. Conclusions and Implications
4.1. Conclusions
4.2. Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Degroot, M.H. Reaching a consensus. J. Am. Stat. Assoc. 1974, 69, 118–121. [Google Scholar] [CrossRef]
- Hegselmann, R.; Krause, U. Opinion dynamics and bounded confidence models, analysis and simulation. J. Artif. Soc. Soc. Simul. 2002, 5, 2. [Google Scholar]
- Weisbuch, G.; Deffuant, G.; Amblard, F.; Nadal, J.-P. Meet, discuss, and segregate! Complexity 2002, 7, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Dittmer, J.C. Consensus formation under bounded confidence. Nonlinear Anal. 2001, 47, 4615–4621. [Google Scholar] [CrossRef]
- Blondel, V.D.; Hendrickx, J.M.; Tsitsiklis, J.N. Continuous-Time Average-Preserving opinion dynamics with Opinion-Dependent communications. SIAM J. Control. Optim. 2010, 48, 5214–5240. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, J. A stabilization theorem for dynamics of continuous opinions. Phys. A Stat. Mech. Its Appl. 2005, 355, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, S. On the consensus threshold for the opinion dynamics of krause–hegselmann. Int. J. Mod. Phys. C 2004, 16, 259–270. [Google Scholar] [CrossRef] [Green Version]
- Gang, K.; Zhao, Y.; Yi, P.; Shi, Y. Multi-Level opinion dynamics under bounded confidence. PLoS ONE 2012, 7, e43507. [Google Scholar]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef]
- Boccara, N. Models of opinion formation: Influence of opinion leaders. Int. J. Mod. Phys. C 2008, 19, 93–109. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Kou, G. Bounded Confidence-based opinion formation for opinion leaders and opinion followers on social networks. Stud. Inform. Control 2014, 23, 153–162. [Google Scholar] [CrossRef]
- Fagnani, F. Heterogeneity, Minorities, and Leaders in Opinion Formation. Available online: http://calvino.polito.it/~fagnani/conferenze/Ki-net.pdf (accessed on 9 October 2022).
- Mukhopadhyay, A.; Mazumdar, R.R.; Roy, R. Majority rule based opinion dynamics with biased and stubborn agents. In Proceedings of the 2016 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, Antibes Juan-les-Pins, France, 14–18 June 2016; pp. 385–386. [Google Scholar]
- Stella, L.; Bagagiolo, F.; Bauso, D.; Como, G. Opinion dynamics and stubbornness through mean-field games. In Proceedings of the 52nd IEEE Conference on Decision and Control, Firenze, Italy, 10–13 December 2013; pp. 2519–2524. [Google Scholar]
- Ghaderi, J.; Srikant, R. Opinion Dynamics in Social Networks with Stubborn Agents; Pergamon Press, Inc.: New York, NY, USA, 2014. [Google Scholar]
- Meadows, M.; Cliff, D. The Relative Disagreement Model of Opinion Dynamics: Where Do Extremists Come From? Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Fan, K.; Pedrycz, W. Opinion evolution influenced by informed agents. Phys. A Stat. Mech. Its Appl. 2016, 462, 431–441. [Google Scholar] [CrossRef]
- Stauffer, D.; Ortmanns, H.M. Simulation of consensus model of deffuant ET al. on a BARABu00c1SIu2013ALBERT network. Int. J. Mod. Phys. C 2003, 15, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Amblard, F.; Deffuant, G. The role of network topology on extremism propagation with the relative agreement opinion dynamics. Phys. A Stat. Mech. Its Appl. 2004, 343, 725–738. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y. Public opinion evolution based on complex networks. Cybern. Inf. Technol. 2015, 15, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Holme, P.; Kim, B.J. Growing scale-free networks with tunable clustering. Phys. Rev. E 2002, 65, 026107. [Google Scholar] [CrossRef] [Green Version]
- Si, X.; Liu, Y.; Zhang, Z. Opinion dynamics in populations with implicit community structure. Int. J. Mod. Phys. C 2009, 20, 2013–2026. [Google Scholar] [CrossRef]
- Hammer, R.J.; Moore, T.W.; Finley, P.D.; Como, G. The Role of Community Structure in Opinion Cluster Formation; Springer International Publishing: Cham, Switzerland, 2012. [Google Scholar]
- Lu, A.; Sun, C.; Liu, Y. The impact of community structure on the convergence time of opinion dynamics. Discret. Dyn. Nat. Soc. 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Liu, J.; Anderson, B.D.O.; Yu, C.; Başar, T. Evolution of social power in social networks with dynamic topology. IEEE Trans. Autom. Control 2018, 63, 3793–3808. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, S.; Pereira, F.S.F.; Fernandes, S.; Gama, J. Social network analysis: An overview. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1256. [Google Scholar] [CrossRef]
- Zaheer, A.; Soda, G. Network evolution: The origins of structural holes. Adm. Sci. Q. 2009, 54, 1–31. [Google Scholar] [CrossRef]
- Matakos, A.; Terzi, E.; Tsaparas, P. Measuring and moderating opinion polarization in social networks. Data Min. Knowl. Discov. 2017, 31, 1480–1505. [Google Scholar] [CrossRef]
- Ceragioli, F.; Frasca, P. Continuous and discontinuous opinion dynamics with bounded confidence. Nonlinear Anal. Real World Appl. 2012, 13, 1239–1251. [Google Scholar] [CrossRef]
PI | p = 0.1 | p = 0.2 | p = 0.3 | p = 0.4 | p = 0.5 | p = 0.6 | p = 0.7 | p = 0.8 | p = 0.9 | |
---|---|---|---|---|---|---|---|---|---|---|
p-value | compare with p = 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
compare with p-0.1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
HHI | p = 0.1 | p = 0.2 | p = 0.3 | p = 0.4 | p = 0.5 | p = 0.6 | p = 0.7 | p = 0.8 | p = 0.9 | |
p-value | compare with p = 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
compare with p-0.1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.20 | 0.05 | 0.07 | 0.53 | 0.00 | |
entropy | p = 0.1 | p = 0.2 | p = 0.3 | p = 0.4 | p = 0.5 | p = 0.6 | p = 0.7 | p = 0.8 | p = 0.9 | |
p-value | compare with p = 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
compare with p-0.1 | 0.00 | 0.00 | 0.00 | 0.00 | 0.14 | 0.00 | 0.76 | 0.73 | 0.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, A.; Guo, Y. Asymmetry Opinion Evolution Model Based on Dynamic Network Structure. Symmetry 2022, 14, 2499. https://doi.org/10.3390/sym14122499
Lu A, Guo Y. Asymmetry Opinion Evolution Model Based on Dynamic Network Structure. Symmetry. 2022; 14(12):2499. https://doi.org/10.3390/sym14122499
Chicago/Turabian StyleLu, An, and Yaguang Guo. 2022. "Asymmetry Opinion Evolution Model Based on Dynamic Network Structure" Symmetry 14, no. 12: 2499. https://doi.org/10.3390/sym14122499
APA StyleLu, A., & Guo, Y. (2022). Asymmetry Opinion Evolution Model Based on Dynamic Network Structure. Symmetry, 14(12), 2499. https://doi.org/10.3390/sym14122499