Figure 1.
Numerical and exact solutions of problem 1 at different time levels with , ,
Figure 1.
Numerical and exact solutions of problem 1 at different time levels with , ,
Figure 2.
(a) Numerical and (b) exact space-time solutions of problem 1 at with ,
Figure 2.
(a) Numerical and (b) exact space-time solutions of problem 1 at with ,
Figure 3.
(a) Comparison of absolute errors of problem 1 using the three inversion methods with and (b) versus with and
Figure 3.
(a) Comparison of absolute errors of problem 1 using the three inversion methods with and (b) versus with and
Figure 4.
(a) versus with and (b) The absolute error verses error estimate for different values of are shown, corresponding to Problem 1 with . It is observed that the error agrees with the error estimate. (c) versus with and , corresponding to problem 1.
Figure 4.
(a) versus with and (b) The absolute error verses error estimate for different values of are shown, corresponding to Problem 1 with . It is observed that the error agrees with the error estimate. (c) versus with and , corresponding to problem 1.
Figure 5.
(a) versus t with and (b) versus t with , and corresponding to problem 1.
Figure 5.
(a) versus t with and (b) versus t with , and corresponding to problem 1.
Figure 6.
Numerical solutions of problem 2 at different time levels with
Figure 6.
Numerical solutions of problem 2 at different time levels with
Figure 7.
(a) Comparison of absolute errors of problem 2 for various values of , with , and (b) versus with and
Figure 7.
(a) Comparison of absolute errors of problem 2 for various values of , with , and (b) versus with and
Figure 8.
(a) versus with and (b) Absolute error verses error estimate for different values of are shown, corresponding to Problem 2 with , . It is observed that the error agrees with the error estimate. (c) versus with and corresponding to problem 2.
Figure 8.
(a) versus with and (b) Absolute error verses error estimate for different values of are shown, corresponding to Problem 2 with , . It is observed that the error agrees with the error estimate. (c) versus with and corresponding to problem 2.
Figure 9.
(a) versus t with and (b) versus t with and corresponding to problem 2.
Figure 9.
(a) versus t with and (b) versus t with and corresponding to problem 2.
Figure 10.
Numerical and exact solutions of problem 3 at different time levels with and
Figure 10.
Numerical and exact solutions of problem 3 at different time levels with and
Figure 11.
(a) Numerical and (b) exact space-time solutions of problem 3 at with , and
Figure 11.
(a) Numerical and (b) exact space-time solutions of problem 3 at with , and
Figure 12.
(a) Comparison of absolute errors of problem 3 for various values of , with and (b) versus with and
Figure 12.
(a) Comparison of absolute errors of problem 3 for various values of , with and (b) versus with and
Figure 13.
(a) Error versus with and (b) The absolute error verses error estimate for different values of are shown, corresponding to Problem 3 with . It is observed that the error agrees with the error estimate. (c) Error versus with and corresponding to problem 3.
Figure 13.
(a) Error versus with and (b) The absolute error verses error estimate for different values of are shown, corresponding to Problem 3 with . It is observed that the error agrees with the error estimate. (c) Error versus with and corresponding to problem 3.
Figure 14.
(a) Error versus t with and (b) Error versus t with and corresponding to problem 3.
Figure 14.
(a) Error versus t with and (b) Error versus t with and corresponding to problem 3.
Table 1.
The using the proposed scheme along the path at .
Table 1.
The using the proposed scheme along the path at .
| N | n | | | C. Time (s) |
---|
30 | 70 | 10 | 1.18 | 6.4 | 0.353447 |
40 | | | 2.55 | 6.4 | 0.416162 |
50 | | | 2.46 | 6.4 | 0.538895 |
60 | 20 | 8 | 3.60 | 1.4 | 0.271687 |
| 30 | | 5.01 | 2.1 | 0.324185 |
| 40 | | 6.04 | 2.9 | 0.386367 |
Table 2.
The using the proposed scheme along the path at .
Table 2.
The using the proposed scheme along the path at .
| N | n | | | C. Time (s) |
---|
30 | 20 | 10 | 5.49 | 1.7 | 0.202415 |
40 | | | 1.67 | 1.7 | 0.225109 |
50 | | | 1.45 | 1.7 | 0.308366 |
60 | | | 1.53 | 1.7 | 0.436627 |
70 | 30 | 12 | 7.50 | 3.0 | 0.843163 |
| 50 | | 7.42 | 5.1 | 2.020373 |
| 80 | | 9.54 | 8.3 | 4.864506 |
Table 3.
The using the proposed scheme at .
Table 3.
The using the proposed scheme at .
| N | n | | | CPU (s) |
---|
8 | 70 | 10 | 6.22 | 6.4 | 0.346949 |
10 | | | 9.56 | 6.4 | 0.334023 |
12 | | | 7.99 | 6.4 | 0.281686 |
14 | | | 2.16 | 6.4 | 0.288764 |
16 | 50 | 12 | 1.61 | 5.1 | 0.225202 |
| 60 | | 1.81 | 6.2 | 0.244202 |
| 70 | | 5.04 | 7.3 | 0.336965 |
| 80 | | 3.47 | 8.3 | 0.346112 |
| 90 | | 6.01 | 9.4 | 0.418864 |
Table 4.
The using the proposed scheme along the path at .
Table 4.
The using the proposed scheme along the path at .
| | N | n | | | C. Time (s) |
---|
| 40 | 90 | 10 | 1.12 | 8.3 | 0.450731 |
| 50 | | | 3.54 | 8.3 | 0.671841 |
| 60 | | | 3.53 | 8.3 | 1.206206 |
| 70 | | | 3.53 | 8.3 | 1.150397 |
| 80 | 60 | 10 | 7.61 | 5.5 | 0.839738 |
| | 70 | | 3.61 | 6.4 | 0.997628 |
| | 100 | | 1.07 | 9.2 | 1.612720 |
[56] | | | | 4.41 | | |
Table 5.
The using the proposed scheme at .
Table 5.
The using the proposed scheme at .
| | N | n | | | CPU (s) |
---|
| 8 | 70 | 10 | 1.10 | 6.4 | 0.317848 |
| 10 | | | 1.08 | 6.4 | 0.332286 |
| 12 | | | 3.25 | 6.4 | 0.323966 |
| 14 | | | 3.64 | 6.4 | 0.331252 |
| 16 | 50 | 12 | 1.53 | 5.1 | 0.268543 |
| | 60 | | 1.34 | 6.2 | 0.321235 |
| | 70 | | 8.73 | 7.3 | 0.365170 |
| | 80 | | 7.73 | 8.3 | 0.443169 |
| | 90 | | 4.96 | 9.4 | 0.533850 |
| | 100 | | 2.72 | 9.4 | 0.558243 |
[56] | | | | 4.41 | | |
Table 6.
of the proposed method for problem 3 using at for various Pclet numbers.
Table 6.
of the proposed method for problem 3 using at for various Pclet numbers.
| | N | n | | | | |
---|
| 30 | 40 | 8 | 9.83 | 9.83 | 9.83 | 9.83 |
| 40 | | | 2.20 | 2.20 | 2.20 | 2.20 |
| 50 | | | 5.70 | 5.70 | 5.70 | 5.70 |
| 60 | | | 4.37 | 4.37 | 4.37 | 4.38 |
| 70 | | | 2.96 | 2.96 | 2.96 | 2.96 |
| 90 | | | 1.79 | 1.76 | 1.79 | 1.80 |
| 100 | | | 1.25 | 1.24 | 1.29 | 1.29 |
| 90 | 20 | 10 | 1.67 | 1.95 | 2.02 | 2.02 |
| | 30 | | 2.59 | 4.09 | 5.12 | 5.20 |
| | 40 | | 4.38 | 4.62 | 5.16 | 5.20 |
| | 50 | | 5.93 | 6.40 | 6.41 | 6.40 |
[10] | | | | | 2.87 | 2.68 | 7.40 |
Table 7.
using the proposed scheme at and .
Table 7.
using the proposed scheme at and .
| N | n | | | CPU (s) |
---|
8 | 70 | 10 | 1.60 | 6.4 | 0.334523 |
10 | | | 6.29 | 6.4 | 0.426634 |
12 | | | 8.80 | 6.4 | 0.347591 |
14 | | | 2.40 | 6.4 | 0.479109 |
16 | 50 | 12 | 2.20 | 5.1 | 0.361524 |
| 60 | | 2.61 | 6.2 | 0.322293 |
| 70 | | 4.20 | 7.3 | 0.376275 |
| 80 | | 3.90 | 8.3 | 0.447432 |
| 90 | | 3.44 | 9.4 | 0.718522 |
| 100 | | 4.98 | 9.4 | 0.672432 |