Some Basic Inequalities on (ϵ)-Para Sasakian Manifold
Abstract
:1. Introduction
2. Preliminaries
- totally umbilical when , is the mean curvature of M,
- totally geodesic if ,
- minimal if .
3. Contact Pseudo-Slant-Submanifold of an -PSM
- (i)
- is slant.
- (ii)
- ([26]) .
- (iii)
- .
- (i)
- ⇒ M is anti-invariant submanifold.
- (ii)
- , ⇒ M is invariant submanifold.
- (iii)
- , ⇒ M is a properly slanted submanifold.
- (iv)
- ⇒ M is an anti-invariant submanifold.
- (v)
- , ⇒ M is a semi-invariant submanifold.
- (vi)
- , ⇒ M is a contact pseudo-slant submanifold.
4. Main Results
- (i)
- the generalized normalized δ-Casorati curvature holds, r is a real number;
- (ii)
- the generalized normalized δ-Casorati curvature verifies
- (i)
- for normalized δ-Casorati curvature
- (ii)
- for normalized δ-Casorati curvature
5. Contact Pseudo-Slant Submanifold of Ricci Solitons
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.Y. Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60, 568–578. [Google Scholar] [CrossRef]
- Aquib, M.; Mihai, A.; Mihai, I.; Uddin, S. New obstructions to warped product immersions in complex space forms. Symmetry 2022, 14, 1747. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Park, K. Optimization on slant submanifolds of golden Riemannian manifolds using generalized normalized δ-Casorati curvatures. J. Geom. 2020, 111, 1–19. [Google Scholar] [CrossRef]
- Liu, X. On Ricci curvature of totally real submanifolds in a quaternion projective space. Arch. Math. 2002, 38, 297–305. [Google Scholar]
- Mihai, I.; Al-Solamy, F.; Shahid, M.H. On Ricci curvature of a quaternion CR-submanifold in a quaternion space form. Rad. Mat. 2003, 12, 91–98. [Google Scholar]
- Siddiqi, M.D.; Siddiqui, A.N.; Mofarreh, F.; Aytimur, H. A Study of Kenmotsu-like statistical submersions. Symmetry 2022, 14, 1681. [Google Scholar] [CrossRef]
- Vilcu, G.E. Slant submanifolds of quaternionic space forms. Publ. Math. Debr. 2012, 81, 397–413. [Google Scholar] [CrossRef] [Green Version]
- Casorati, F. Mesure de la courbure des surfaces suivant l’idée commune. Acta Math. 1890, 14, 95–110. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Khedher, K.M.; Bahadır, O.; Siddiqi, M.D. On golden Lorentzian manifolds equipped with generalized symmetric metric connection. Mathematics 2021, 9, 2430. [Google Scholar] [CrossRef]
- Choudhary, M.A.; Blaga, A.M. Inequalities for generalized normalized δ-Casorati curvatures of slant submanifolds in metallic Riemannian space forms. J. Geom. 2020, 111, 1–18. [Google Scholar] [CrossRef]
- Lee, C.W.; Lee, J.W.; Vilcu, G.E. Optimal inequalities for the normalized δ-Casorati curvatures of submanifolds in Kenmotsu space forms. Adv. Geom. 2017, 17, 1–13. [Google Scholar] [CrossRef]
- Siddiqi, M.D.; Ramandi, G.F.; Hasan, M. Optimal inequalities for submanifolds in an (ϵ)-almost para-contact manifolds. Math. Anal. Convex Optim. MACO 2021, 2, 107–118. [Google Scholar]
- Sato, I. On a structure similar to the almost contact structure. Tensor N.S. 1976, 30, 219–224. [Google Scholar]
- Tripathi, M.M.; Kilic, E.; Perktas, S.Y.; Keles, S. Indefinite almost para-contact metric manidolds. Int. J. Math. Math. Sci. 2010, 2010, 846195. [Google Scholar] [CrossRef]
- Dirik, S.; Atceken, M.; Yildirim, U. Contact pseudo-slant submanifolds of an (ϵ)-PSSF. J. Int. Math. Virtual Inst. 2020, 10, 59–74. [Google Scholar]
- Perelman, G. The entropy formula for the Ricci flow and its geometric applications. arXiv 2002, arXiv:math/0211159. [Google Scholar]
- Hamilton, R.S. The Ricci flow on surfaces mathematics and general relativity (Santa Cruz, CA, 1986). Contemp. Math. Amer. Math. Soc. 1988, 71, 237–262. [Google Scholar]
- Barros, A.; Gomes, J.N.; Ribeiro, E. Immersion of almost Ricci solitons into a Riemannian manifold. Math. Cont. 2011, 40, 91–102. [Google Scholar] [CrossRef]
- De, U.C.; Khan, M.N.I.; Sardar, A. h-Almost Ricci–Yamabe solitons in paracontact geometry. Mathematics 2022, 10, 3388. [Google Scholar] [CrossRef]
- Sardar, A.; Khan, M.N.I.; De, U.C. η*-Ricci solitons and almost co-Kähler manifolds. Mathematics 2021, 9, 3200. [Google Scholar] [CrossRef]
- Bejan, C.L.; Crasmareanu, M. Second order parallel tensors and Ricci solitons in 3-dimensional normal paracontact geometry. Anal. Glob. Anal. Geom. 2014, 46, 117–128. [Google Scholar] [CrossRef]
- Calin, C.; Crasmareanu, M. From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malays. Math. Sci. Soc. 2010, 33, 361–368. [Google Scholar]
- Chen, B.Y.; Deshmukh, S. Ricci solitons and concurrent vector field. Balkan J. Geom. Its Appl. 2015, 20, 14–25. [Google Scholar]
- Chen, B.Y.; Deshmukh, S. Classification of Ricci solitons on Euclidean hypersurfaces. Int. J. Math. 2014, 25, 1450104. [Google Scholar] [CrossRef] [Green Version]
- Beem, J.K.; Ehrlich, P.E. Global Lorentzian Geometry, Pure and Applied Mathematics; Marcel Dekker: New York, NY, USA, 1981; p. 67. [Google Scholar]
- Khan, V.A.; Khan, M.A. Pseudo-slant submanifolds of a Sasakian manifold. Indian J. Prue Appl. Math. 2007, 38, 31–42. [Google Scholar]
- Dirik, S.; Atceken, M.; Yildirim, U. Contact pseudo-slant submanifolds of a Kenmotsu manifold. J. Math. Comput. Sci. 2016, 16, 386–394. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, M.M. Certain basic inequalities for submanifolds in (κ,μ)-space. Recent Adv. Riemannian Lorentzian Geom. 2003, 337, 187. [Google Scholar]
- Blaga, A.M.; Crasmareanu, M. Inequalities for gradient Einstein and Ricci solitons. Facta Univ. (Nis.) Ser. Math. Infor. 2020, 35, 355–356. [Google Scholar] [CrossRef]
- Vilcu, G.E.; Chen, B.Y. inequalities for slant submanifolds in quaternionic space form. Turk. J. Math. 2010, 34, 115–128. [Google Scholar]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities involving Casorati curvatures. Bull. Transylv. Univ. Brasv Ser. B 2007, 14, 85–93. [Google Scholar]
- Decu, S.; Haesen, S.; Verstraelen, L. Optimal inequalities characterising quasi-umbilical submanifolds. J. Inequal. Pure Appl. Math. 2008, 9, 79. [Google Scholar]
- Ali, S.; Mubeen, S.; Ali, R.S.; Rahman, G.; Morsy, A.; Nisar, K.S.; Purohit, S.D.; Zakarya, M. Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Math. 2021, 6, 9705–9730. [Google Scholar] [CrossRef]
- Rezk, H.M.; AlNemer, G.; Saied, A.I.; Bazighifan, O.; Zakarya, M. Some New Generalizations of Reverse Hilbert-Type Inequalities on Time Scales. Symmetry 2022, 14, 750. [Google Scholar] [CrossRef]
- Saker, S.H.; Sayed, A.G.; AlNemer, G.; Zakarya, M. Half-linear dynamic equations and investigating weighted Hardy and Copson inequalities. Adv. Differ. Equ. 2020, 2020, 549. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhary, M.A.; Khan, M.N.I.; Siddiqi, M.D. Some Basic Inequalities on (ϵ)-Para Sasakian Manifold. Symmetry 2022, 14, 2585. https://doi.org/10.3390/sym14122585
Choudhary MA, Khan MNI, Siddiqi MD. Some Basic Inequalities on (ϵ)-Para Sasakian Manifold. Symmetry. 2022; 14(12):2585. https://doi.org/10.3390/sym14122585
Chicago/Turabian StyleChoudhary, Majid Ali, Mohammad Nazrul Islam Khan, and Mohd Danish Siddiqi. 2022. "Some Basic Inequalities on (ϵ)-Para Sasakian Manifold" Symmetry 14, no. 12: 2585. https://doi.org/10.3390/sym14122585
APA StyleChoudhary, M. A., Khan, M. N. I., & Siddiqi, M. D. (2022). Some Basic Inequalities on (ϵ)-Para Sasakian Manifold. Symmetry, 14(12), 2585. https://doi.org/10.3390/sym14122585