Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen
Abstract
:1. Introduction
2. Experimental Section
2.1. Catalysts Preparation
2.2. Characterization
2.3. Catalytic Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Shafie, M.; Kambara, S.; Hayakawa, Y. Plasma-enhanced catalytic ammonia decomposition over ruthenium (Ru/Al2O3) and soda glass (SiO2) materials. J. Energy Inst. 2021, 99, 145–153. [Google Scholar] [CrossRef]
- Schüth, F.; Palkovits, R.; Schlögl, R.; Su, D.S. Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition. Energy Environ. Sci. 2012, 5, 6278–6289. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Gu, L.; Yao, Y.; Zhao, J.; Ji, W.; Ding, W.; Au, C.-T. Layered double hydroxides derived Nix(MgyAlzOn) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect. Appl. Catal. B 2017, 201, 451–460. [Google Scholar] [CrossRef]
- Feng, J.; Liu, L.; Ju, X.H.; Wang, J.; Zhang, X.; He, T.; Chen, P. Highly dispersed ruthenium nanoparticles on Y2O3 as superior catalyst for ammonia decomposition. ChemCatChem 2021, 13, 1552–1558. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Feng, J.; Ju, X.; Wang, J.; He, T.; Chen, P. Metal-support interaction-modulated catalytic activity of Ru nanoparticles on Sm2O3 for efficient ammonia decomposition. Catal. Sci. Technol. 2021, 11, 2915–2923. [Google Scholar]
- Kishida, K.; Kitano, M.; Sasase, M.; Sushko, P.V.; Abe, H.; Niwa, Y.; Ogasawara, K.; Yokoyama, T.; Hosono, H. Air-stable calcium cyanamide-supported ruthenium catalyst for ammonia synthesis and decomposition. ACS Appl. Energy Mater. 2020, 3, 6573–6582. [Google Scholar] [CrossRef]
- Le, T.A.; Kim, Y.; Kim, H.W.; Lee, S.-U.; Kim, J.-R.; Kim, T.-W.; Lee, Y.-J.; Chae, H.-J. Ru-supported lanthania-ceria composite as an efficient catalyst for COx-free H2 production from ammonia decomposition. Appl. Catal. B 2021, 285, 19831. [Google Scholar] [CrossRef]
- Hu, Z.-P.; Weng, C.-C.; Chen, C.; Yuan, Z.-Y. Two-dimensional mica nanosheets supported Fe nanoparticles for NH3 decomposition to hydrogen. Mol. Catal. 2018, 448, 162–170. [Google Scholar] [CrossRef]
- Lian, X.; Duan, H.; Zeng, W.; Guo, W. Theoretical insight into the reaction mechanism of ammonia dehydrogenation on iron-based clusters. Mater. Today Commun. 2022, 32, 104088. [Google Scholar] [CrossRef]
- Hu, Z.P.; Weng, C.C.; Yuan, G.G.; Lv, X.W.; Yuan, Z.Y. Ni nanoparticles supported on mica for efficient decomposition of ammonia to COx-free hydrogen. Int. J. Hydrogen Energy 2018, 43, 9663–9676. [Google Scholar] [CrossRef]
- Do, Q.C.; Kim, Y.; Le, T.A.; Kim, G.J.; Kim, J.R.; Kim, T.W.; Lee, Y.J.; Chae, H.J. Facile one-pot synthesis of Ni-based catalysts by cation-anion double hydrolysis method as highly active Ru-free catalysts for green H2 production via NH3 decomposition. Appl. Catal. B 2022, 307, 121167. [Google Scholar] [CrossRef]
- Bell, T.E.; Torrente-Murciano, L. H2 production via ammonia decomposition using non-noble metal catalysts: A review. Top. Catal. 2016, 59, 1438–1457. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.P.; Chen, L.; Chen, C.; Yuan, Z.Y. Fe/ZSM-5 catalysts for ammonia decomposition to COx-free hydrogen: Effect of SiO2/Al2O3 ratio. Mol. Catal. 2018, 455, 14–22. [Google Scholar] [CrossRef]
- Hu, Z.P.; Chen, L.; Weng, C.C.; Yuan, Z.Y. Fe nanocatalysts supported on dealuminated ZSM-5 for efficient decomposition of ammonia to COx-Free hydrogen. ChemistrySelect 2018, 3, 4439–4447. [Google Scholar] [CrossRef]
- Zhang, H.; Alhamed, Y.A.; Kojima, Y.; Al-Zahrani, A.A.; Miyaoka, H.; Petrov, L.A. Structure and catalytic properties of Ni/MWCNTs and Ni/AC catalysts for hydrogen production via ammonia decomposition. Int. J. Hydrogen Energy 2014, 39, 277–287. [Google Scholar] [CrossRef]
- Im, Y.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia decomposition over nickel catalysts supported on alkaline earth metal aluminate for H2 production. Int. J. Hydrogen Energy 2020, 45, 26979–26988. [Google Scholar] [CrossRef]
- Sima, D.; Wu, H.; Tian, K.; Xie, S.; Foo, J.J.; Li, S.; Wang, D.; Ye, Y.; Zheng, Z.; Liu, Y.Q. Enhanced low temperature catalytic activity of Ni/AleCe0.8Zr0.2O2 for hydrogen production from ammonia decomposition. Int. J. Hydrogen Energy 2020, 45, 9342–9352. [Google Scholar] [CrossRef]
- Gu, Y.; Ma, Y.; Long, Z.; Zhao, S.; Wang, Y.; Zhang, W. One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition. Int. J. Hydrogen Energy 2021, 46, 4045–4054. [Google Scholar] [CrossRef]
- Wan, Z.; Tao, Y.; You, H.; Zhang, X.; Shao, J. Na-ZSM-5 zeolite nanocrystals supported nickel nanoparticles for efficient hydrogen production from ammonia decomposition. ChemCatChem 2021, 13, 3027–3036. [Google Scholar] [CrossRef]
- Hu, Z.P.; Weng, C.C.; Chen, C.; Yuan, Z.Y. Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: A comparative study of the preparation methods. Appl. Catal. A 2018, 562, 49–57. [Google Scholar] [CrossRef]
- Okura, K.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Ammonia decomposition over nickel catalysts supported on rare-earth oxides for the on-site generation of hydrogen. ChemCatChem 2016, 8, 2988–2995. [Google Scholar] [CrossRef]
- Deng, Q.F.; Zhang, H.; Hou, X.X.; Ren, T.Z.; Yuan, Z.Y. High-surface area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen. Int. J. Hydrogen Energy 2012, 37, 15901–15907. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, L.; Shen, Y.; Zhou, J.; Jia, Z.; Yan, T.; Wang, P.; Zhang, D. Self-defense effects of Ti-modified attapulgite for alkali-resistant NOx catalytic reduction. Environ. Sci. Technol. 2022, 56, 4386–4395. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Yu, P.; Liu, H.; Xiong, S.; Xiao, X.; Deng, J.; Huang, L. Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction. New J. Chem. 2020, 44, 16101. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Shi, H.; Dai, D.; Zuo, S.; Yao, C.; Ni, C. Full spectrum driven SCR removal of NO over hierarchical CeVO4/attapulgite nanocomposite with high resistance to SO2 and H2O. J. Hazard. Mater. 2020, 386, 121977. [Google Scholar] [CrossRef]
- Yang, F.; Weng, J.; Ding, J.; Zhao, Z.; Qin, L.; Xia, F. Effective conversion of saccharides into hydroxymethylfurfural catalyzed by a natural clay, attapulgite. Renew. Energy 2020, 151, 829–836. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, W.; Chen, X.; Chen, L.; Hou, C.; Tang, T.; Zhang, X. Ceramic nanofiber membrane anchoring nanosized Mn2O3 catalytic ozonation of sulfamethoxazole in water. J. Hazard. Mater. 2022, 436, 129168. [Google Scholar] [CrossRef]
- Cao, J.L.; Shao, G.S.; Wang, Y.; Liu, Y.; Yuan, Z.Y. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation. Catal. Commun. 2008, 9, 2555–2559. [Google Scholar] [CrossRef]
- Hansgen, D.A.; Vlachos, D.G.; Chen, J.G.G. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nat. Chem. 2010, 2, 484–489. [Google Scholar] [CrossRef]
- Li, L.; Chen, F.; Shao, J.; Dai, Y.; Ding, J.; Tang, Z. Attapulgite clay supported Ni nanoparticles encapsulated by porous silica: Thermally stable catalysts for ammonia decomposition to COx free hydrogen. Int. J. Hydrogen Energy 2016, 41, 21157–21165. [Google Scholar] [CrossRef]
- Huo, C.; Yang, H. Attachment of nickel oxide nanoparticles on the surface of palygorskite nanofibers. J. Colloid Interf. Sci. 2012, 384, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.L.; Yan, Z.L.; Deng, Q.F.; Yuan, Z.Y.; Wang, Y.; Sun, G.; Wang, X.D.; Hari, B.; Zhang, Z.Y. Homogeneous precipitation method preparation of modified red mud supported Ni mesoporous catalysts for ammonia decomposition. Catal. Sci. Technol. 2014, 4, 361–368. [Google Scholar] [CrossRef]
- England, A.H.; Duffin, A.M.; Schwartz, C.P.; Uejio, J.S.; Prendergast, D.; Saykally, R.J. On the hydration and hydrolysis of carbon dioxide. Chem. Phys. Lett. 2011, 514, 187–195. [Google Scholar] [CrossRef]
- Jayaprakash, S.; Dewangan, N.; Jangam, A.; Das, S.; Kawi, S. LDH-derived Ni-MgO-Al2O3 catalysts for hydrogen-rich syngas production via steam reforming of biomass tar model: Effect of catalyst synthesis methods. Int. J. Hydrogen Energy 2021, 46, 18338–18352. [Google Scholar] [CrossRef]
- Hibino, T.; Ohya, H. Synthesis of crystalline layered double hydroxides: Precipitation by using urea hydrolysis and subsequent hydrothermal reactions in aqueous solutions. Appl. Clay. Sci. 2009, 45, 123–132. [Google Scholar] [CrossRef]
- Cao, X.; Huo, W.; Wang, M.; Wei, H.; Lu, Z.; Li, K. Visible-light-assisted peroxydisulfate activation over Ag6Si2O7/Cu(II)-modified palygorskite composite for the effective degradation of organic pollutants by radical and nonradical pathways. Environ. Res. 2022, 214, 113970. [Google Scholar] [CrossRef]
- Boudriche, L.; Calvet, R.; Hamdi, B.; Balard, H. Surface properties evolution of attapulgite by IGC analysis as a function of thermal treatment. Colloids Surf. A 2012, 399, 1–10. [Google Scholar]
- Yuan, Z.Y.; Ren, T.Z.; Vantomme, A.; Su, B.L. Facile and generalized preparation of hierarchically mesoporous-macroporous binary metal oxide materials. Chem. Mater. 2004, 16, 5096–5106. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Wei, Z.P.; Arredondo, M.; Peng, H.Y.; Zhang, Z.; Guo, D.L.; Xing, G.Z.; Li, Y.F.; Wong, L.M.; Wang, S.J.; Valanoor, N.; et al. A template and catalyst-free metal-etching-oxidation method to synthesize aligned oxide nanowire arrays: NiO as an example. ACS Nano 2010, 4, 4785–4791. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.L.; Wang, Y.; Yu, X.L.; Wang, S.R.; Wu, S.H.; Yuan, Z.Y. Mesoporous CuO-Fe2O3 composite catalysts for low-temperature carbon monoxide oxidation. Appl. Catal. B 2008, 79, 26–34. [Google Scholar] [CrossRef]
- Huang, X.; Xue, G.; Wang, C.; Zhao, N.; Sun, N.; Wei, W.; Sun, Y. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane: Effect of Ni embedding and Y2O3 promotion. Catal. Sci. Technol. 2016, 6, 449–459. [Google Scholar] [CrossRef]
- Ju, X.; Liu, L.; Yu, P.; Guo, J.; Zhang, X.; He, T.; Wu, G.; Chen, P. Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Appl. Catal. B 2017, 211, 167–175. [Google Scholar] [CrossRef]
- Wang, Y.; Mao, X.; Yang, J.; Wang, J.; Guan, W.; Chen, J.; Han, B.; Tian, Z. One-step synthesis of Ni/yttrium-doped barium zirconates catalyst for on-site hydrogen production from NH3 decomposition. Int. J. Hydrogen Energy 2022, 47, 2608–2621. [Google Scholar] [CrossRef]
- Li, G.; Kanezashi, M.; Tsuru, T. Catalytic ammonia decomposition over high-performance Ru/graphene nanocomposites for efficient COx-free hydrogen production. Catalysts 2017, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Meng, T.; Xu, Q.Q.; Li, Y.T.; Chang, J.L.; Ren, T.Z.; Yuan, Z.Y. Nickle nanoparticles highly dispersed on reduced graphene oxide for ammonia decomposition to hydrogen. J. Ind. Eng. Chem. 2015, 32, 373–379. [Google Scholar] [CrossRef]
- Duan, X.; Qian, G.; Zhou, X.; Sui, Z.; Chen, D.; Yuan, W. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition. Appl. Catal. B 2011, 101, 189–196. [Google Scholar] [CrossRef]
- Zhang, L.F.; Li, M.; Ren, T.Z.; Liu, X.; Yuan, Z.Y. Ce-modified Ni nanoparticles encapsulated in SiO2 for COx-free hydrogen production via ammonia decomposition. Int. J. Hydrogen Energy 2015, 40, 2648–2656. [Google Scholar] [CrossRef]
- Li, Y.; Yao, L.; Song, Y.; Liu, S.; Zhao, J.; Ji, W.; Au, C.T. Core-shell structured micro capsular-like Ru@SiO2 reactor for efficient generation of COx-free hydrogen through ammonia decomposition. Chem. Commun. 2010, 46, 5298–5300. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, H.; Li, W. Kinetic study of NH3 decomposition over Ni nanoparticles: The role of La promoter, structure sensitivity and compensation effect. Appl. Catal. A 2005, 296, 257–267. [Google Scholar] [CrossRef]
- Li, X.K.; Ji, W.J.; Zhao, J.; Wang, S.J.; Au, C.T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15. J. Catal. 2005, 236, 181–189. [Google Scholar] [CrossRef]
- Yin, S.F.; Xu, B.Q.; Zhou, X.P.; Au, C.T. A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A 2004, 277, 1–9. [Google Scholar] [CrossRef]
- Yin, S.F.; Zhang, Q.H.; Xu, B.Q.; Zhu, W.X.; Ng, C.F.; Au, C.T. Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 2004, 224, 384–396. [Google Scholar] [CrossRef]
Samples | SBET (m2/g) | Vtot (cm3/g) | Ni Content 1 (wt%) | Conversion 2 (%) | H2 Production (mmol min−1 gcat−1) | Ea (kJ/mol) |
---|---|---|---|---|---|---|
ATP | 139 | 0.48 | - | - | - | - |
AATP | 262 | 0.60 | - | 31.8 | 10.6 | - |
NiO | - | - | - | 23.6 | 7.9 | - |
5%-Ni/AATP | 241 | 0.49 | 4.9 | 39.2 | 13.1 | 93.7 |
10%-Ni/AATP | 224 | 0.61 | 7.5 | 78.6 | 26.3 | 91.8 |
15%-Ni/AATP | 224 | 0.56 | 12.1 | 84.5 | 28.3 | 85.9 |
20%-Ni/AATP | 227 | 0.55 | 14.9 | 95.3 | 31.9 | 79.1 |
25%-Ni/AATP | 199 | 0.53 | 17.8 | 88.9 | 30.4 | 79.5 |
30%-Ni/AATP | 179 | 0.55 | 22.6 | 86.7 | 29.0 | 81.8 |
Catalyst | Metal Content (wt%) | T (oC) | GHSV (mL/h/g) | Conv. (%) | Ref |
---|---|---|---|---|---|
5%Ru/MgO-DP | 3.5% Ru | 450 | 30,000 | 56.5 | [43] |
Ru/graphene | - | 450 | 60,000 | 62 | [45] |
15%Ni/MRM | 15%Ni | 700 | 30,000 | 97.9 | [32] |
Ni-30/ATP@SiO2 | 8.7% | 650 | 30,000 | 73.4 | [30] |
Ni-50/ATP | 38.6% | 650 | 30,000 | 89.9 | [30] |
15%-Ni/rGO | 15% | 700 | 30,000 | 76.5 | [46] |
25Ni@Al2O3 | 25% | 600 | 24,000 | 93.9 | [18] |
25Ni@Al2O3 | 25% | 650 | 24,000 | 99.1 | [18] |
Fe-CNFs/mica | 3.5%Fe | 600 | 6500 | 98.9 | [46] |
Fe/mica | 3.5%Fe | 600 | 6000 | 51.3 | [47] |
20%-Ni/AATP | 14.9%Ni | 650 | 30,000 | 95.3 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.-F.; Hu, Z.-P.; Liang, S.-H.; Xu, F.; Yuan, Z.-Y. Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry 2022, 14, 2627. https://doi.org/10.3390/sym14122627
Zhang L-F, Hu Z-P, Liang S-H, Xu F, Yuan Z-Y. Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry. 2022; 14(12):2627. https://doi.org/10.3390/sym14122627
Chicago/Turabian StyleZhang, Ling-Feng, Zhong-Pan Hu, Shi-Hang Liang, Feng Xu, and Zhong-Yong Yuan. 2022. "Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen" Symmetry 14, no. 12: 2627. https://doi.org/10.3390/sym14122627
APA StyleZhang, L. -F., Hu, Z. -P., Liang, S. -H., Xu, F., & Yuan, Z. -Y. (2022). Nickel Nanoparticles Anchored on Activated Attapulgite Clay for Ammonia Decomposition to Hydrogen. Symmetry, 14(12), 2627. https://doi.org/10.3390/sym14122627