Crossover Dynamics of Rotavirus Disease under Fractional Piecewise Derivative with Vaccination Effects: Simulations with Real Data from Thailand, West Africa, and the US
Abstract
:1. Introduction
2. Preliminaries
3. Existence and Uniqueness
- (C1)
- ∃; ∀ we have
- (C2)
- ∃&;
4. Stability Analysis
5. Numerical Scheme for the Fractional Piecewise Rotavirus Model
6. Numerical Simulations
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prathumwan, D.; Trachoo, K.; Chaiya, I. Mathematical Modeling for Prediction Dynamics of the Coronavirus Disease 2019 (COVID-19) Pandemic, Quarantine Control Measures. Symmetry 2020, 12, 1404. [Google Scholar] [CrossRef]
- Chamnan, A.; Pongsumpun, P.; Tang, I.M.; Wongvanich, N. Local and Global Stability Analysis of Dengue Disease with Vaccination and Optimal Control. Symmetry 2021, 13, 1917. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention 2015 Rotavirus: Epidemiology and prevention of vaccine preventable diseases. In The Pink Book: Course Textbook, 13th ed.; Second; CDC: Atlanta, GA, USA, 2015.
- Kraay, A.N.M.; Brouwer, A.F.; Nan, L.; Collender, P.A.; Remais, J.V.; Eisenberg, J.N.S. Modeling environmentally mediated rotavirustransmission: The role of temperature and hydrologic factors. Proc. Natl. Acad. Sci. USA 2018, 115, 2782–2790. [Google Scholar] [CrossRef] [Green Version]
- Parashar, U.D.; Gibson, C.J.; Bresee, J.S.; Glass, R.I. Rotavirus and severe childhood diarrhea. Emerg. Infect. Dis. 2006, 12, 304–306. [Google Scholar] [CrossRef] [Green Version]
- Glass, R.I.; Parashar, U.; Patel, M.; Tate, J.; Jiang, B.; Gentsch, J. The control of rotavirus gastroenteritis in the United States. Trans. Am. Clin. Climatol. Assoc. 2012, 123, 36–52. [Google Scholar] [PubMed]
- Glass, R.I.; Parashar, U.; Patel, M.; Gentsch, J.; Jiang, B. Rotavirus vaccines: Successes and challenges. J. Infect. 2014, 68, S9–S18. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Weber, S.G. Rotavirus infection in adults. Lancet Infect. Dis. 2004, 4, 91–99. [Google Scholar] [CrossRef]
- Ruuska, T.; Vesikari, T. Rotavirus disease in Finnish children: Use of numerical scores for clinical severity of diarrhoeal episodes. Scand. J. Infect. Dis. 1990, 22, 259–267. [Google Scholar] [CrossRef]
- McNeal, M.M.; Bernstein, D.I. Rotaviruses. In Viral Infections of Humans; Springer: Berlin, Germany, 2014; pp. 713–714. [Google Scholar]
- Dennehy, P.H. Transmission of rotavirus and other enteric pathogens in the home. Pediatr. Infect. Dis. J. 2000, 19, S103–S105. [Google Scholar] [CrossRef]
- Nitiema, L.W.; Nordgren, J.; Ouermi, D.; Dianou, D.; Traore, A.S.; Svensson, L.; Simpore, J. Burden of rotavirus and other enteropathogens among children with diarrhea in Burkina Faso. Int. J. Infect. Dis. 2011, 15, 646–652. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Z.; Yang, Z.; Zhang, Z.K.; Zhou, T.; Sun, G.Q. Global analysis of an SIS model with an infective vector on complex networks. Nonlinear Anal. Real World Appl. 2012, 13, 543–557. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, Z. Global analysis of multiple routes of disease transmission on heterogeneous networks. Phys. A Stat. Mech. Appl. 2013, 392, 3869–3880. [Google Scholar] [CrossRef]
- Hochwald, C.; Kivela, L. Rotavirus vaccine, live, oral, tetravalent (RotaShield). Pediatr. Nurs. 1998, 25, 203–204. [Google Scholar]
- Jain, P.; Jain, A. Waterborne viral gastroenteritis: An introduction to common agents. In Water and Health; Springer: Berlin, Germany, 2014; pp. 53–74. [Google Scholar]
- WHO. Introduction of Rotavirus Vaccines into National Immunization Programs; WHO: Geneva, Switzerland, 2009; Volume 5, pp. 200–209.
- WHO. World Health Organisation Statistics Report on Water and Sanitation Program (WSP) in Uganda; Epidemiological March Record 2012; WHO: Geneva, Switzerland, 2012; Volume 88, pp. 224–240.
- WHO. Bulletin of the World Health Organisation, Rotavirus and Other Viral Diarrhoes; WHO Scientific Working Group; WHO: Geneva, Switzerland, 1980; Volume 58, pp. 183–198.
- Heymann, D. (Ed.) Gastroenteritis, acute viral. In Control of Communicable Disease Manual, 18th ed.; America Public Health Association: Washington, DC, USA, 2004; pp. 224–227. [Google Scholar]
- Vesikari, T.; Karvonen, A.; Prymula, R.; Schuster, V.; Tejedor, J.C.; Cohen, R. Efficacy of human rotavirus vaccine against rotavirus gastroenteritis during the first 2 years of life in European Infants: Randomized double-blind controlled study. Lancet 2007, 370, 1757–1763. [Google Scholar] [CrossRef] [PubMed]
- Zaman, K.; Dang, D.A.; Victor, J.C. Efficay of pentavalent rotavirus vaccines against severe rotavirus gastroenteritis in infants in developing countries in Sub-Sahara Africa: A randomised, double-blind, placebocontrolled trail. Lancet 2010, 376, 615–623. [Google Scholar] [CrossRef]
- Shim, E.; Feng, Z.; Martcheva, M.; Castillo-Chavez, C. An age-structured epidemic model of rotavirus with vaccination. J. Math. Biol. 2006, 53, 719–746. [Google Scholar] [CrossRef]
- Cortese, M.M.; Parashar, U.D. Prevention of Rotavirus Gastroenteritis Among Infants and Children: Recommendations of The Advisory Committee On Immunization Practices (ACIP). MMWR Morb. Mortal. Wkly. Rep. 2009, 58, 1–25. [Google Scholar]
- Snelling, T.; Markey, P.; Carapetis, J.; Andrews, R. Rotavirus Infection in Northern Territory Before and after Vaccination. Microbiology 2012, 2, 61–63. [Google Scholar] [CrossRef]
- Shuaib, S.E.; Riyapan, P. A mathemathical model to study the effects of breastfeeding and vaccination on rotavirus epidemics. J. Math. Fund. Sci. 2020, 52, 43–65. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Assiri, T.A.; Hasan, M.M.A. Numerical solutions of nonlinear fractional Schrödinger equations using nonstandard discretizations. Numer. Methods Partial Differ. Equ. 2017, 33, 1399–1419. [Google Scholar] [CrossRef]
- Rahman, M.; Ahmad, S.; Arfan, M.; Akgül, A.; Jarad, F. Fractional Order Mathematical Model of Serial Killing with Different Choices of Control Strategy. Fractal Fract. 2022, 6, 162. [Google Scholar] [CrossRef]
- Sinan, M.; Ali, A.; Shah, K.; Assiri, T.A.; Nofal, T.A. Stability analysis and optimal control of COVID-19 pandemic SEIQR fractional mathematical model with harmonic mean type incidence rate and treatment. Results Phys. 2021, 22, 103873. [Google Scholar] [CrossRef] [PubMed]
- Sweilam, N.H.; Al-Mekhlafi, S.M.; Assiri, T.A. Numerical Study for Time Delay Multistrain Tuberculosis Model of Fractional Order. Complexity 2017, 2017, 1047384. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Ullah, A.; Arfan, M.; Shah, K. On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana–Baleanu (AB) derivative. Chaos Soliton. Fract. 2020, 140, 110233. [Google Scholar] [CrossRef]
- Omar, O.A.M.; Elbarkouky, R.A.; Ahmed, H.M. Fractional stochastic modeling of COVID-19 under wide spread of vaccinations: Egyptian case study. Alex. Eng. J. 2022, 61, 8595–8609. [Google Scholar] [CrossRef]
- Omar, O.A.M.; Alnafisah, Y.; Elbarkouk, R.A.; Ahmed, H.M. COVID-19 deterministic and stochastic modeling with optimized daily vaccinations in Saudi Arabia. Results Phys. 2021, 28, 104629. [Google Scholar] [CrossRef]
- Atangana, A.; Araz, S.I. New concept in calculus:Piecewise differential and integral operators. Chaos Soliton. Fract. 2021, 145, 110638. [Google Scholar]
- Abdelmohsen, S.A.M.; Yassen, M.F.; Ahmad, S.; Abdelbacki, A.M.M.; Khan, J. Theoretical and numerical study of the rumours spreading model in the framework of piecewise derivative. Eur. Phys. J. Plus 2022, 137, 1–12. [Google Scholar]
- Ahmad, S.; Yassen, M.F.; Alam, M.M.; Alkhati, S.; Jarad, F.; Riaz, M.B. A numerical study of dengue internal transmission model with fractional piecewise derivative. Results Phys. 2022, 39, 105798. [Google Scholar] [CrossRef]
- Xu, C.; Alhejaili, W.; Saifullah, S.; Khan, A.; Khan, J.; El-Shorbagy, M.A. Analysis of Huanglongbing disease model with a novel fractional piecewise approach. Chaos Soliton. Fract. 2022, 161, 112316. [Google Scholar] [CrossRef]
Parameter | Description | Units |
---|---|---|
Rate of inclusion into class | people/day | |
Rate of inclusion into class | people/day | |
Rate of inclusion into class | people/day | |
Rate of breastfeeding of class | 1/day | |
Rate of vaccination of class | 1/day | |
Rate of vaccination of class | 1/day | |
Contact rate | 1/day | |
Rate of waning of antibodies (maternal) from breast milk | 1/day | |
Rate of waning of vaccine | 1/day | |
Infection risk reduction due to antibodies (maternal) | 1/day | |
Infection risk reduction due to vaccines | 1/day | |
Mortality rate of disease | 1/day | |
Natural death rate | 1/day | |
Flow rate into the removed class | 1/day |
Parameter | Breastfeeding Only | Breastfeeding and Vaccination |
---|---|---|
6.8394 | 6.8394 | |
0 | 0.2 | |
0 | 0.2 | |
0.01 | 0.01 | |
0.62 | 0.62 | |
0.62 | 0.62 | |
8.3333 | 8.3333 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naowarat, S.; Ahmad, S.; Saifullah, S.; Sen, M.D.l.; Akgül, A. Crossover Dynamics of Rotavirus Disease under Fractional Piecewise Derivative with Vaccination Effects: Simulations with Real Data from Thailand, West Africa, and the US. Symmetry 2022, 14, 2641. https://doi.org/10.3390/sym14122641
Naowarat S, Ahmad S, Saifullah S, Sen MDl, Akgül A. Crossover Dynamics of Rotavirus Disease under Fractional Piecewise Derivative with Vaccination Effects: Simulations with Real Data from Thailand, West Africa, and the US. Symmetry. 2022; 14(12):2641. https://doi.org/10.3390/sym14122641
Chicago/Turabian StyleNaowarat, Surapol, Shabir Ahmad, Sayed Saifullah, Manuel De la Sen, and Ali Akgül. 2022. "Crossover Dynamics of Rotavirus Disease under Fractional Piecewise Derivative with Vaccination Effects: Simulations with Real Data from Thailand, West Africa, and the US" Symmetry 14, no. 12: 2641. https://doi.org/10.3390/sym14122641
APA StyleNaowarat, S., Ahmad, S., Saifullah, S., Sen, M. D. l., & Akgül, A. (2022). Crossover Dynamics of Rotavirus Disease under Fractional Piecewise Derivative with Vaccination Effects: Simulations with Real Data from Thailand, West Africa, and the US. Symmetry, 14(12), 2641. https://doi.org/10.3390/sym14122641