Extended Graph of Fuzzy Topographic Topological Mapping Model:
Abstract
:1. Introduction
2. Generalized FTTM
3. Extended Generalization of FTTM
- is simply denoted by .
- denotes the cardinality of the set .
4. Conjecturing
5. The Theorem
5.1. Even
5.2. Odd
- (i)
- Assumeis true.
- (ii)
- Assumeis true.
6. Discussions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shukor, N.A.; Ahmad, T.; Idris, A.; Awang, S.R.; Fuad, A.A.A. Graph of Fuzzy Topographic Topological Mapping in Relation to k-Fibonacci Sequence. J. Math. 2021, 2021, 7519643. [Google Scholar] [CrossRef]
- Ahmad, T.; Ahmad, R.S.; Rahman, W.E.Z.W.A.; Yun, L.L.; Zakaria, F. Homeomorphisms of Fuzzy Topographic Topological Mapping (FTTM). Matematika 2005, 21, 35–42. [Google Scholar]
- Elsafi, M.S.A.E. Combinatorial Analysis of N-Tuple Polygonal Sequence of Fuzzy Topographic Topological Mapping. Ph.D. Thesis, University Teknologi Malaysia, Skudai, Malaysia, 2014. [Google Scholar]
- Debnath, P. Domination in interval-valued fuzzy graphs. Ann. Fuzzy Math. Inform. 2013, 6, 363–370. [Google Scholar]
- Konwar, N.; Davvaz, B.; Debnath, P. Results on generalized intuitionistic fuzzy hypergroupoids. J. Intell. Fuzzy Syst. 2019, 36, 2571–2580. [Google Scholar] [CrossRef]
- Zhu, J.; Li, B.; Zhang, Z.; Zhao, L.; Li, H. High-Order Topology-Enhanced Graph Convolutional Networks for Dynamic Graphs. Symmetry 2022, 14, 2218. [Google Scholar] [CrossRef]
- Wang, G.; Chen, L.; Xiong, Z. The l1-Embeddability of Hypertrees and Unicyclic Hypergraphs. Symmetry 2022, 14, 2260. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Treacy, M.M.J. The Symmetry and Topology of Finite and Periodic Graphs and Their Embeddings in Three-Dimensional Euclidean Space. Symmetry 2022, 14, 822. [Google Scholar] [CrossRef]
- Poulik, S.; Das, S.; Ghorai, G. Randic index of bipolar fuzzy graphs and its application in network systems. J. Appl. Math. Comput. 2021, 68, 2317–2341. [Google Scholar] [CrossRef]
- Poulik, S.; Das, S.; Ghorai, G. Estimation of most affected cycles and busiest network route based on complexity function of graph in fuzzy environment. Artif. Intell. Rev. 2022, 55, 4557–4574. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.; Ahmad, T.; Ashaari, A.; Awang, S.R.; Mamat, S.S.; Mohamad, W.M.W.; Fuad, A.A.A. A fuzzy graph approach analysis for COVID-19 outbreak. Results Phys. 2021, 25, 104267. [Google Scholar] [CrossRef] [PubMed]
- Hassan, N.; Ahmad, T.; Mahat, N.A.; Maarof, H.; How, F.K. Counterfeit fifty Ringgit Malaysian banknotes authentication using novel graph-based chemometrics method. Sci. Rep. 2022, 12, 4826. [Google Scholar] [CrossRef] [PubMed]
- Sayed, M.; Ahmad, T. Graph of finite sequence of fuzzy topographic topological mapping of order two. J. Math. Stat. 2013, 9, 18–23. [Google Scholar] [CrossRef]
- Jamaian, S.S.; Ahmad, T.; Talib, J. Generalized finite sequence of fuzzy topographic topological mapping. J. Math. Stat. 2010, 6, 151–156. [Google Scholar]
- Zenian, S.; Ahmad, T.; Idris, A. A Comparison of Ordinary Fuzzy and Intuitionistic Fuzzy Approaches in Visualizing the Image of Flat Electroencephalography. J. Phys. Conf. Ser. 2017, 890, 012079. [Google Scholar] [CrossRef] [Green Version]
- Rahman, W.E.Z.W.A.; Ahmad, T.; Ahmad, R.S. Simulating the Neuronal Current Sources in the Brain. Proc. Biomed. 2002, 19–22. [Google Scholar]
- Mukaram, M.Z.; Ahmad, T.; Alias, N. Graph of pseudo degree zero generated by . In Proceedings of the International Conference on Mathematical Sciences and Technology 2018 (Mathtech2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation, Penang, Malaysia, 10–12 December 2018; AIP Publishing LLC: Penang, Malaysia, 2018; p. 020007. [Google Scholar] [CrossRef]
- Mukaram, M.Z.; Ahmad, T.; Alias, N.; Shukor, N.A.; Mustapha, F. Extended Graph of Fuzzy Topographic Topological Mapping Model. Symmetry 2021, 13, 2203. [Google Scholar] [CrossRef]
- Moura, L. Induction and Recursion. PowerPoint Presentation, University of Ottawa. 2010. Available online: https://www.site.uottawa.ca/~lucia/courses/2101-12/lecturenotes/06Induction.pdf (accessed on 1 October 2022).
n | ||
---|---|---|
4 | 12 | 24 |
5 | 30 | 120 |
6 | 60 | 480 |
7 | 126 | 1680 |
8 | 252 | 5544 |
9 | 510 | 17,640 |
10 | 1020 | 54,960 |
11 | 2046 | 168,960 |
12 | 4092 | 515,064 |
13 | 8190 | 1,561,560 |
14 | 16,380 | 4,717,440 |
15 | 32,766 | 14,217,840 |
1. | 2. |
3. | 4. |
5. | 6. |
7. | 8. |
9. | 10. |
11. | 12. |
13. | 14. |
15. | 16. |
17. | 18. |
19. | 20. |
21. | 22. |
23. | 24. |
n | ||
---|---|---|
5 | 120 | - |
7 | 1680 | 14 |
9 | 17,640 | 10.5 |
11 | 168,960 | 9.5782 |
13 | 1,561,560 | 9.24 |
15 | 14,217,840 | 9.104 |
n | ||
---|---|---|
4 | 24 | - |
6 | 480 | 20 |
8 | 5544 | 11.55 |
10 | 54,960 | 9.9134 |
12 | 515,064 | 9.3 |
14 | 4,717,440 | 9.1589 |
6 | 264 | - |
8 | 1224 | 4.63 |
10 | 5064 | 4.13 |
12 | 20,424 | 4.03 |
14 | 81,864 | 4.00 |
7 | 600 | - |
9 | 2520 | 4.2 |
11 | 10,200 | 4.04 |
13 | 40,920 | 4.011 |
15 | 163,800 | 4.00 |
n | ||||
---|---|---|---|---|
6 | 264 | - | - | - |
7 | 600 | - | - | - |
8 | 1224 | 264 | 168 | - |
9 | 2520 | 600 | - | 120 |
10 | 5064 | 1224 | 168 | - |
11 | 10,200 | 2520 | - | 120 |
12 | 20,424 | 5064 | 168 | - |
13 | 40,920 | 10,200 | - | 120 |
14 | 81,864 | 20,424 | 168 | - |
15 | 163,800 | 40,920 | - | 120 |
n | In |
---|---|
6 | 264 |
8 | 1224 |
10 | 5064 |
12 | 20,424 |
14 | 81,864 |
n | In = 4In−2 + 168 |
---|---|
6 | I6 = 4I4 + 168 = 4(24) + 168 |
8 | I8 = 4I6 + 168 = 4(4(24) + 168) = 42(24) + (5)168 |
10 | I10 = 4I8 + 168 = 4(42(24) + (5)168) + 168 = 43(24) + (21)168 |
12 | I12 = 4I10 + 168 = 4(43(24) + (21)168 + 168 |= 44(24) + (85)168 |
⋮ | ⋮ |
4 + 2m | I4+2m = 4mI4 + (1 + 4m−1)168 = 4m(24) + (am)168 such that am = am−1 + 4m−1 with a0 = 0 |
7 | 600 |
9 | 2520 |
11 | 10,200 |
13 | 40,920 |
15 | 163,800 |
n | |
---|---|
7 | |
9 | |
11 | |
13 | |
such that with |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shukor, N.A.; Ahmad, T.; Idris, A.; Awang, S.R.; Mukaram, M.Z.; Alias, N.
Extended Graph of Fuzzy Topographic Topological Mapping Model:
Shukor NA, Ahmad T, Idris A, Awang SR, Mukaram MZ, Alias N.
Extended Graph of Fuzzy Topographic Topological Mapping Model:
Shukor, Noorsufia Abd, Tahir Ahmad, Amidora Idris, Siti Rahmah Awang, Muhammad Zillullah Mukaram, and Norma Alias.
2022. "Extended Graph of Fuzzy Topographic Topological Mapping Model:
Shukor, N. A., Ahmad, T., Idris, A., Awang, S. R., Mukaram, M. Z., & Alias, N.
(2022). Extended Graph of Fuzzy Topographic Topological Mapping Model: