The Quasi-Keplerian Motion of the Charged Test Particle in Reissner-Nordström Spacetime under the Wagoner-Will-Epstein-Haugan Representation
Abstract
:1. Introduction
2. The Quasi-Keplerian Dynamics for the Charged Test Particle
3. The Quasi-Keplerian Motion for the Charged Test Particle
3.1. Keplerian Motion in the Newtonian Theory
3.2. The Quasi-Keplerian Motion under the Wagoner-Will-Epstein-Haugan Representation
4. The Relations between the Keplerian Parameters and the Orbital Energy and Angular Momentum
5. The Validity of the Analytical Solution
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinberg, S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Richter, G.W.; Matzner, R.A. Second-order contributions to gravitational deflection of light in the parametrized post-Newtonian formalism. Phys. Rev. D 1982, 26, 1219. [Google Scholar] [CrossRef]
- Klioner, S.A.; Zschocke, S. Numerical versus analytical accuracy of the formulas for light propagation. Class. Quantum Grav. 2010, 27, 075015. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Yang, B.; Jiang, C.; Lin, W. Parameterized Post-Post-Newtonian Light Propagation in the Field of One Spherically-Symmetric Body. Commun. Theor. Phys. 2019, 71, 1455. [Google Scholar] [CrossRef]
- Brumberg, V. Relativistic Celesctial Mechanics; Nauka: Moscow, Russia, 1972. [Google Scholar]
- Wagoner, R.V.; Will, C.M. Post-Newtonian gravitational radiation from orbiting point masses. Astrophys. J. 1976, 210, 764. [Google Scholar] [CrossRef]
- Epstein, R. The binary pulsar: Post-Newtonian timing effects. Astrophys. J. 1977, 219, 92. [Google Scholar] [CrossRef]
- Damour, T.; Deruelle, N. General relativistic celestial mechanics of binary systems. I. The post-Newtonian motion. Ann. Inst. H Poincaré 1985, 43, 107. [Google Scholar]
- Haugan, M.P. Post-Newtonian arrival-time analysis for a pulsar in a binary system. Astrophys. J. 1985, 296, 1. [Google Scholar] [CrossRef]
- Soffel, M.H.; Ruder, H.; Schneider, M. The two-body problem in the (truncated) PPN-Theory. Celest. Mech. 1987, 40, 77. [Google Scholar] [CrossRef]
- Soffel, M.H. Relativity in Astrometry, Celestial Mechanics and Geodesy; Springer: Berlin, Germany, 1989. [Google Scholar]
- Klioner, S.A.; Kopeikin, S.M. The post-Keplerian orbital representations of the relativistic two-body problem. Astrophys. J. 1994, 427, 951. [Google Scholar] [CrossRef]
- Kopeikin, S.M.; Efroimsky, M.; Kaplan, G. Relativistic Celestical Mechanics of the Solar System; Wiley-VCH: New York, NY, USA, 2012. [Google Scholar]
- Damour, T.; Schäfer, G. Higher-order relativistic periastron advances and binary pulsars. Nuovo Cimento B 1988, 101, 127. [Google Scholar] [CrossRef]
- Schäfer, G.; Wex, N. Second post-Newtonian motion of compact binaries. Phys. Lett. A 1993, 174, 196. [Google Scholar] [CrossRef]
- Mora, T.; Will, C.M. Post-Newtonian diagnostic of quasiequilibrium binary configurations of compact objects. Phys. Rev. D 2004, 69, 104021. [Google Scholar] [CrossRef] [Green Version]
- Memmesheimer, R.M.; Gopakumar, A.; Schäfer, G. Third post-Newtonian accurate generalized quasi-Keplerian parametrization for compact binaries in eccentric orbits. Phys. Rev. D 2004, 70, 104011. [Google Scholar] [CrossRef] [Green Version]
- Boetzel, Y.; Susobhanan, A.; Gopakumar, A.; Klein, A.; Jetzer, P. Solving post-Newtonian accurate Kepler equation. Phys. Rev. D 2017, 96, 044011. [Google Scholar] [CrossRef] [Green Version]
- Soffel, M.H.; Han, W.B. Applied General Relativity: Theory and Applications in Astronomy, Celestial Mechanics and Metrology; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Yang, B.; Lin, W. Quasi-Keplerian motion under the generally parameterized post-Newtonian force. Gen. Relativ. Gravit. 2020, 52, 49. [Google Scholar] [CrossRef]
- Yang, B.; Lin, W. A new formulation of quasi-Keplerian motion under the generally parameterized post-Newtonian force. Eur. Phys. J. Plus 2020, 135, 137. [Google Scholar] [CrossRef]
- Gao, W.; Yang, B.; Lin, W. The 2PN motion of a non-spinning compact binary: The Wagoner-Will-Epstein-Haugan representation. Gravit. Cosmol. 2021, 27, 240–246. [Google Scholar] [CrossRef]
- Reissner, H. Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie. Ann. Phys. 1916, 335, 106. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. Zur Gravitationstheorie. Ann. Phys. 1917, 359, 117. [Google Scholar] [CrossRef]
- Nordström, G. On the energy of the gravitation field in Einstein’s theory. Proc. K. Ned. Akad. Wetensch. 1918, 20, 1238. [Google Scholar]
- He, G.; Lin, W. The exact harmonic metric for a moving Reissner-Nordström black Hole. Chin. Phys. Lett. 2014, 31, 090401. [Google Scholar] [CrossRef]
- Deng, C.; Wu, X.; Liang, E. The use of Kepler solver in numerical integrations of quasi-Keplerian orbits. Mon. Not. R. Astron. Soc. 2020, 496, 2946–2961. [Google Scholar] [CrossRef]
- Hu, S.; Wu, X.; Liang, E. An energy-conserving integrator for conservative Hamiltonian systems with ten-dimensional phase space. Astrophys. J. Suppl. Ser. 2021, 253, 55. [Google Scholar] [CrossRef]
- Pan, G.; Wu, X.; Liang, E. Extended phase-space symplectic-like integrators for coherent post-Newtonian Euler-Lagrange equations. Phys. Rev. D 2021, 104, 044055. [Google Scholar] [CrossRef]
- Huang, L.; Wu, X.; Ma, D. Second post-Newtonian Lagrangian dynamics of spinning compact binaries. Eur. Phys. J. C 2016, 76, 488. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of explicit symplectic integrators in general relativity. I. Schwarzschild black holes. Astrophys. J. 2021, 907, 66. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of explicit symplectic integrators in general relativity. II. Reissner-Nordström black holes. Astrophys. J. 2021, 909, 22. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, W.; Liu, F.; Wu, X. Construction of explicit symplectic integrators in general relativity. III. Reissner-Nordström-(anti)-de Sitter black holes. Astrophys. J. Suppl. Ser. 2021, 254, 8. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Sun, W.; Liu, F. Construction of explicit symplectic integrators in general relativity. IV. Kerr black holes. Astrophys. J. 2021, 914, 63. [Google Scholar] [CrossRef]
- Hackmann, E.; Kagramanova, V.; Kunz, J.; Lammerzahl, C. Analytic solutions of the geodesic equation in higher dimensional static spherically symmetric spacetimes. Phys. Rev. D 2008, 78, 124018. [Google Scholar] [CrossRef] [Green Version]
- Grunau, S.; Kagramanova, V. Geodesics of electrically and magnetically charged test particles in the Reissner-Nordström space-time: Analytical solutions. Phys. Rev. D 2011, 83, 044009. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, D.; Quevedo, H.; Ruffini, R. Motion of charged test particles in Reissner-Nordström spacetime. Phys. Rev. D 2011, 83, 024021. [Google Scholar] [CrossRef]
- Iorio, L. Constraining the electric charges of some astronomical bodies in Reissner-Nordström spacetimes and genericr r-2-type power-law potentials from orbital motions. Gen. Relativ. Gravit. 2012, 44, 1753. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Xie, Y. Strong field gravitational lensing by a charged Galileon black hole. J. Cosmol. Astropart. P. 2016, 7, 7. [Google Scholar] [CrossRef]
- Pugliese, D.; Quevedo, H.; Ruffini, R. General classification of charged test particle circular orbits in Reissner-Nordström spacetime. Eur. Phys. J. C 2017, 77, 206. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Shen, Y.; Xie, Y. Weak and strong deflection gravitational lensings by a charged Horndeski black hole. J. Cosmol. Astropart. P. 2019, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Lin, W. Post-Keplerian motion in Reissner-Nordström spacetime. Gen. Relativ. Gravit. 2019, 51, 116. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Jiang, C.; Lin, W. Second post-Newtonian motion in Reissner-Nordström spacetime. Phys. Rev. D 2022, 105, 064003. [Google Scholar] [CrossRef]
- Arun, K.G.; Blanchet, L.; Iyer, B.; Sinha, S. Third post-Newtonian angular momentum flux and the secular evolution of orbital elements for inspiralling compact binaries in quasi-elliptical orbits. Phys. Rev. D 2009, 80, 124018. [Google Scholar] [CrossRef] [Green Version]
- Tessmer, M.; Schäfer, G. Eccentric motion of spinning compact binaries. Phys. Rev. D 2014, 89, 104055. [Google Scholar] [CrossRef] [Green Version]
- Hinder, I.; Kidder, L.; Pfeiffer, P. Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory. Phys. Rev. D 2018, 98, 044015. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.R.; Khlopov, M. An eccentric binary blackhole in post-Newtonian theory. Symmetry 2022, 14, 510. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, N.; Liu, W.; Wu, X. Equivalence between two charged black holes in dynamics of orbits outside the event horizons. Gen. Relativ. Gravit. 2022, 54, 110. [Google Scholar] [CrossRef]
- Wu, M.; Guo, H.; Kang, X. Shadow cast of rotating charged black hole with scalar Q-hair. Symmetry 2022, 14, 2237. [Google Scholar] [CrossRef]
- Hu, S.; Deng, C.; Li, D.; Wu, X.; Liang, E. Observational signatures of Schwarzschild-MOG black holes in scalar-tensor-vector gravity: Shadows and rings with different accretions. Eur. Phys. J. C 2022, 82, 885. [Google Scholar] [CrossRef]
- Lin, W.; Jiang, C. Exact and unique metric for Kerr-Newman black hole in harmonic coordinates. Phys. Rev. D 2014, 89, 087502. [Google Scholar] [CrossRef]
- Damour, T.; Jaranowski, P.; Schäfer, G. Equivalence between the ADM-Hamiltonian and the harmonic-coordinates approaches to the third post-Newtonian dynamics of compact binaries. Phys. Rev. D 2001, 63, 044021. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Mei, L.; Huang, G.; Liu, S. Analytical and numerical studies on differences between Lagrangian and Hamiltonian approaches at the same post-Newtonian order. Phys. Rev. D 2015, 91, 024042. [Google Scholar] [CrossRef]
- Li, D.; Wu, X.; Liang, E. Figure-eight orbits in three post-Newtonian formulations of triple black holes. Phys. Rev. D 2021, 104, 044039. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Jiang, C.; He, G.; Lin, W. The Quasi-Keplerian Motion of the Charged Test Particle in Reissner-Nordström Spacetime under the Wagoner-Will-Epstein-Haugan Representation. Symmetry 2022, 14, 2661. https://doi.org/10.3390/sym14122661
Yang B, Jiang C, He G, Lin W. The Quasi-Keplerian Motion of the Charged Test Particle in Reissner-Nordström Spacetime under the Wagoner-Will-Epstein-Haugan Representation. Symmetry. 2022; 14(12):2661. https://doi.org/10.3390/sym14122661
Chicago/Turabian StyleYang, Bo, Chunhua Jiang, Guansheng He, and Wenbin Lin. 2022. "The Quasi-Keplerian Motion of the Charged Test Particle in Reissner-Nordström Spacetime under the Wagoner-Will-Epstein-Haugan Representation" Symmetry 14, no. 12: 2661. https://doi.org/10.3390/sym14122661
APA StyleYang, B., Jiang, C., He, G., & Lin, W. (2022). The Quasi-Keplerian Motion of the Charged Test Particle in Reissner-Nordström Spacetime under the Wagoner-Will-Epstein-Haugan Representation. Symmetry, 14(12), 2661. https://doi.org/10.3390/sym14122661