Dynamic Inequalities of Two-Dimensional Hardy Type via Alpha-Conformable Derivatives on Time Scales
Abstract
:1. Introduction
- ()
- If and , then
- ()
- If and , then
- (i)
- If η is conformable differentiable of order α at then η is continuous at t;
- (ii)
- If η is continuous at t and t is right-scattered, then η is conformable differentiable of order α at t with
- (iii)
- If t is right-dense, then η is conformable differentiable of order α at t if and only if the limit exists as a finite number. In this case,
- (iv)
- If η is differentiable of order α at then
- (i)
- The sum is conformable differentiable with
- (ii)
- For any is conformable differentiable with
- (iii)
- If η and ξ are continuous, then the product is conformable differentiable with
- (iv)
- If η is continuous, then is conformable differentiable with
- (v)
- If η and ξ are continuous, then is conformable differentiable with
2. Main Results
- ()
- ()
- ()
- ()
- If and in Theorem 23, then inequality (22) reduces to
- ()
- If and in Theorem 23, then inequality (22) reduces to
- ()
- ()
- In Theorem 24, if we take , where is a constant, then we have
- ()
- In Theorem 24, if we take and replace by , then we have
- ()
- If and in Theorem 24, then inequality (28) reduces to
- ()
- If and in Theorem 24, then inequality (28) reduces to
- ()
- ()
- If and in Theorem 25, then inequality (30) reduces to
- ()
- ()
3. Conclusions, Discussions, and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hardy, G.H. Note on a theorem of Hilbert. Math. Z. 1920, 6, 314–317. [Google Scholar] [CrossRef]
- Hardy, G.H. Notes on some points in the integral calculus (lx). Messenger Math. 1925, 54, 150–156. [Google Scholar]
- Littlewood, J.E.; Hardy, G.H. Elementary theorems concerning power series with positive coeficients and moment constants of positive functions. J. Reine Angew. Math. 1927, 157, 141–158. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Hardy, G.H. Notes on some points in the integral calculus (lxit). Messenger Math. 1928, 57, 12–16. [Google Scholar]
- Andersen, K.F.; Heinig, H.P. Weighted norm inequalities for certain integral operators. SIAM J. Math. Anal. 1983, 14, 834–844. [Google Scholar] [CrossRef]
- Andersen, K.F.; Muckenhoupt, B. Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions. Stud. Math. 1982, 72, 9–26. [Google Scholar] [CrossRef]
- Bennett, G. Some elementary inequalities. Quart. J. Math. Oxf. Ser. 1987, 38, 401–425. [Google Scholar] [CrossRef]
- Georgiev, S.G. Integral Inequalities on Time Scales; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Gulsen, T.; Jadlovská, I.; Yilmaz, E. On the number of eigenvalues for parameter-dependent diffusion problem on time scales. Math. Methods Appl. Sci. 2021, 44, 985–992. [Google Scholar] [CrossRef]
- Kufner, A.; Persson, L.-E. Weighted Inequalities of Hardy Type; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2003. [Google Scholar]
- Hilger, S. Analysis on measure chainsa unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales; An Introduction with Applications; Birkhauser Boston, Inc.: Boston, MA, USA, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhauser Boston, Inc.: Boston, MA, USA, 2003. [Google Scholar]
- Rehak, P. Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005, 495–507. [Google Scholar]
- Saker, S.H.; O’Regan, D.; Agarwal, R. Generalized Hardy, Copson, Leindler and Bennett inequalities on time scales. Math. Nachr. 2014, 287, 686–698. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Mahmoud, R.R.; O’Regan, D.; Saker, S.H. Some reverse dynamic inequalities on time scales. Bull. Aust. Math. Soc. 2017, 96, 445–454. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; El-Sennary, H.A.; Khan, Z.A. Some reverse inequalities of Hardy type on time scales. Adv. Differ. Equ. 2020, 2020, 402. [Google Scholar] [CrossRef]
- Saker, S.H.; Rabie, S.S.; AlNemer, G.; Zakarya, M. On structure of discrete muchenhoupt and discrete gehring classes. J. Inequalities Appl. 2020, 2020, 233. [Google Scholar] [CrossRef]
- Ozkan, U.M.; Yildirim, H. Hardy-Knopp-type inequalities on time scales. Dynam. Syst. Appl. 2008, 17, 477–486. [Google Scholar]
- Benkhettou, N.; Hassani, S.; Torres, D.F. A conformable fractional calculus on arbitrary time scales. J. King Saud-Univ.-Sci. 2016, 28, 93–98. [Google Scholar] [CrossRef]
- Sakerr, S.H.; Kenawy, M.; AlNemer, G.H.; Zakarya, M. Some fractional dynamic inequalities of hardy’s type via conformable calculus. Mathematics 2020, 8, 434. [Google Scholar] [CrossRef] [Green Version]
- Zakaryaed, M.; Altanji, M.; AlNemer, G.H.; El-Hamid, A.; Hoda, A.; Cesarano, C.; Rezk, H.M. Fractional reverse coposn’s inequalities via conformable calculus on time scales. Symmetry 2021, 13, 542. [Google Scholar] [CrossRef]
- Bohner, M.; Guseinov, G.S. Multiple integration on time scales. Dynam. Syst. Appl. 2005, 14, 579–606. [Google Scholar]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, A.A.; El-Bary, A.A.; Awrejcewicz, J.; Nonlaopon, K. Dynamic Inequalities of Two-Dimensional Hardy Type via Alpha-Conformable Derivatives on Time Scales. Symmetry 2022, 14, 2674. https://doi.org/10.3390/sym14122674
El-Deeb AA, El-Bary AA, Awrejcewicz J, Nonlaopon K. Dynamic Inequalities of Two-Dimensional Hardy Type via Alpha-Conformable Derivatives on Time Scales. Symmetry. 2022; 14(12):2674. https://doi.org/10.3390/sym14122674
Chicago/Turabian StyleEl-Deeb, Ahmed A., Alaa A. El-Bary, Jan Awrejcewicz, and Kamsing Nonlaopon. 2022. "Dynamic Inequalities of Two-Dimensional Hardy Type via Alpha-Conformable Derivatives on Time Scales" Symmetry 14, no. 12: 2674. https://doi.org/10.3390/sym14122674
APA StyleEl-Deeb, A. A., El-Bary, A. A., Awrejcewicz, J., & Nonlaopon, K. (2022). Dynamic Inequalities of Two-Dimensional Hardy Type via Alpha-Conformable Derivatives on Time Scales. Symmetry, 14(12), 2674. https://doi.org/10.3390/sym14122674