A Qualitative Study on Second-Order Nonlinear Fractional Differential Evolution Equations with Generalized ABC Operator
Abstract
:1. Introduction
- (i)
- is the g-ABC-fractional derivative of order
- (ii)
- is g-R-L fractional integral of order
- (iii)
- g is an increasing function, having a continuous derivative on such that for all
- (iv)
- is a continuous function fulfilled some conditions described later.
- (v)
- are continuous functions.
2. Preliminaries
3. Equivalent Integral Equation
4. Existence and Uniqueness Results
5. Stability Results
- (i)
- for all ,
- (ii)
- (i)
- (ii)
6. An Application
7. Conclusions Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon & Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Abdo, M.S.; Abdeljawad, T.; Kucche, K.D.; Alqudah, M.A.; Ali, S.M.; Jeelani, M.B. On nonlinear pantograph fractional differential equations with Atangana–Baleanu–Caputo derivative. Adv. Differ. Equ. 2021, 2021, 65. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Redding, CA, USA, 2006. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000; Volume 35. [Google Scholar]
- Jeelani, M.B.; Alnahdi, A.S.; Almalahi, M.A.; Abdo, M.S.; Wahash, H.A.; Abdelkawy, M.A. Study of the Atangana-Baleanu-Caputo type fractional system with a generalized Mittag-Leffler kernel. AIMS Math. 2022, 7, 2001–2018. [Google Scholar] [CrossRef]
- Agrawal, O.P. Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 2002, 272, 368–379. [Google Scholar] [CrossRef] [Green Version]
- Ghanbari, B.; Atangana, A. A new application of fractional Atangana–Baleanu derivatives: Designing ABC-fractional masks in image processing. Phys. A Stat. Mech. Its Appl. 2020, 542, 123516. [Google Scholar] [CrossRef]
- Bas, E.; Ozarslan, R. Real world applications of fractional models by Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2018, 116, 121–125. [Google Scholar] [CrossRef]
- Baleanu, D.; Sajjadi, S.S.; Jajarmi, A.; Defterli, Ö. On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: A new fractional analysis and control. Adv. Differ. Equ. 2021, 2021, 234. [Google Scholar] [CrossRef]
- Baleanu, D.; Sajjadi, S.S.; Asad, J.H.; Jajarmi, A.; Estiri, E. Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system. Adv. Differ. Equ. 2021, 2021, 157. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivative with non-local and non-singular kernel. Therm. Sci. 2016, 20, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Atangana, A. Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties. Phys. A Stat. Mech. Appl. 2018, 505, 688–706. [Google Scholar] [CrossRef]
- Atangana, A.; Gómez-Aguilar, J.F. Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos Solitons Fractals 2018, 114, 516–535. [Google Scholar] [CrossRef]
- Abdeljawad, T. A Lyapunov type inequality for fractional operators with nonsingular Mittag–Leffler kernel. J. Inequal. Appl. 2017, 2017, 130. [Google Scholar] [CrossRef] [PubMed]
- Almalahi, M.A.; Ghanim, F.; Botmart, T.; Bazighifan, O.; Askar, S. Qualitative Analysis of Langevin Integro-Fractional Differential Equation under Mittag–Leffler Functions Power Law. Fractal Fract. 2021, 5, 266. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Bazighifan, O.; Panchal, S.K.; Askar, S.S.; Oros, G.I. Analytical Study of Two Nonlinear Coupled Hybrid SystemsInvolving Generalized Hilfer Fractional Operators. Fractal Fract. 2021, 5, 178. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Panchal, S.K.; Shatanawi, W.; Abdo, M.S.; Shah, K.; Abodayeh, K. Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator. Results Phys. 2021, 24, 104045. [Google Scholar] [CrossRef]
- Abdo, M.S.; Shah, K.; Wahash, H.A.; Panchal, S.K. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag–Leffler derivative. Chaos Solitons Fractals 2020, 135, 109867. [Google Scholar] [CrossRef]
- Zhao, D. A Study on Controllability of a Class of Impulsive Fractional Nonlinear Evolution Equations with Delay in Banach Spaces. Fractal Fract. 2021, 5, 279. [Google Scholar] [CrossRef]
- Yang, H. Existence Results of Mild Solutions for the Fractional Stochastic Evolution Equations of Sobolev Type. Symmetry 2020, 12, 1031. [Google Scholar] [CrossRef]
- Shokri, A. A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillating solutions. Numer. Algorithms 2018, 77, 95–109. [Google Scholar] [CrossRef]
- Almalahi, M.A.; Panchal, S.K. On the theory of ψ-Hilfer nonlocal Cauchy problem. J. Sib. Fed. Univ. Math. Phys. 2021, 14, 159–175. [Google Scholar] [CrossRef]
- Raja, M.M.; Vijayakumar, V.; Udhayakumar, R.; Yong, Z. A new approach on approximate controllability of fractional evolution inclusions of order 1 < r < 2 with infinite delay. Chaos Solitons Fractals 2020, 141, 110343. [Google Scholar]
- Shah, K.; Sher, M.; Abdeljawad, T. Study of evolution problem under Mittag–Leffler type fractional order derivative. Alex. Eng. J. 2020, 59, 3945–3951. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D. Differintegration with respect to functions in fractional models involving Mittag–Leffler functions. SSRN Electron. J. 2018. [Google Scholar] [CrossRef]
- Mohammed, P.O.; Abdeljawad, T. Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 363. [Google Scholar] [CrossRef]
- Deimling, K. Nonlinear Functional Analysis; Springer: New York, NY, USA, 1985. [Google Scholar]
- Burton, T.A. A fixed-point theorem of Krasnoselskii. Appl. Math. Lett. 1998, 11, 85–88. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics; Inter-Science: New York, NY, USA; London, UK, 1960. [Google Scholar]
- Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Hyers, D.H.; Rassias, T.M. Approximate homomorphisms. Aequationes Math. 1992, 44, 125–153. [Google Scholar] [CrossRef]
- Khan, H.; Gómez-Aguilar, J.F.; Alkhazzan, A.; Khan, A. A fractional order HIV-TB coinfection model with nonsingular Mittag–Leffler Law. Math. Methods Appl. Sci. 2020, 43, 3786–3806. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalahi, M.A.; Ibrahim, A.B.; Almutairi, A.; Bazighifan, O.; Aljaaidi, T.A.; Awrejcewicz, J. A Qualitative Study on Second-Order Nonlinear Fractional Differential Evolution Equations with Generalized ABC Operator. Symmetry 2022, 14, 207. https://doi.org/10.3390/sym14020207
Almalahi MA, Ibrahim AB, Almutairi A, Bazighifan O, Aljaaidi TA, Awrejcewicz J. A Qualitative Study on Second-Order Nonlinear Fractional Differential Evolution Equations with Generalized ABC Operator. Symmetry. 2022; 14(2):207. https://doi.org/10.3390/sym14020207
Chicago/Turabian StyleAlmalahi, Mohammed A., Amani B. Ibrahim, Alanoud Almutairi, Omar Bazighifan, Tariq A. Aljaaidi, and Jan Awrejcewicz. 2022. "A Qualitative Study on Second-Order Nonlinear Fractional Differential Evolution Equations with Generalized ABC Operator" Symmetry 14, no. 2: 207. https://doi.org/10.3390/sym14020207
APA StyleAlmalahi, M. A., Ibrahim, A. B., Almutairi, A., Bazighifan, O., Aljaaidi, T. A., & Awrejcewicz, J. (2022). A Qualitative Study on Second-Order Nonlinear Fractional Differential Evolution Equations with Generalized ABC Operator. Symmetry, 14(2), 207. https://doi.org/10.3390/sym14020207