Transient Propagation of Spherical Waves in Porous Material: Application of Fractional Calculus
Abstract
:1. Introduction
2. Fractional Model for Porous Media
3. Solution of the Fractional Spherical-Wave Equation
4. Green Function of the Porous Medium in the Time Domain
5. Analytical Solution in the Time Domain
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Calculus of
Appendix B. Calculus of
References
- Allard, J.F. Propagation of Sound in Porous Media: Modeling Sound Absorbing Materials; Chapman and Hall: London, UK, 1993. [Google Scholar]
- Fellah, Z.E.A.; Fellah, M.; Motri, F.G.; Sebaa, N.; Depollier, C.; Lauriks, W. Measuring permeability of porous materials at low frequency range via acoustic transmitted waves. Rev. Sci. Instrum. 2007, 78, 114902. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, X.Y. A review of acoustic dampers applied to combustion chambers in aerospace industry. Prog. Aerosp. Sci. 2015, 74, 114–130. [Google Scholar] [CrossRef]
- Ogam, E.; Fellah, Z.E.A.; Sebaa, N.; Groby, J.P. Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonicwaves. J. Sound Vib. 2011, 330, 1074–1090. [Google Scholar] [CrossRef]
- Garay, R.; Nidia Pino, N.G. Acoustic Behavior in Three Types of Housing: Brick Social Housing, Structural Insulated Panel (SIP) Emergency Housing and Mediagua Emergency Housing. Environ. Sci. Rev. Constr. 2019, 18, 96–110. [Google Scholar] [CrossRef]
- Johnson, D.L.; Koplik, J.; Dashen, R. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 1987, 176, 379–402. [Google Scholar] [CrossRef]
- Lafarge, D.; Lemarinier, P.; Allard, J.-F.; Tarnow, V. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am. 1997, 102, 1995–2006. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.; Melon, M.; Montembault, V.; Castagnède, B.; Lauriks, W.; Leclaire, P. Evaluation of the viscous characteristic length of air-saturated porous materials from the ultrasonic dispersion curve. Comptes R. Acad. Sci. 1996, 322, 122–127. [Google Scholar]
- Leclaire, P.; Kelders, L.; Lauriks, W.; Melon, M.; Brown, N.; Castagnede, B. Determination of the viscous and thermal characteristic lengths of plastic foams by ultrasonic measurements in helium and air. J. Appl. Phys. 1996, 80, 2009–2012. [Google Scholar] [CrossRef] [Green Version]
- Roncen, R.; Fellah, Z.E.A.; Simon, F.; Piot, E.; Fellah, M.; Ogam, E.; Depollier, C. Bayesian inference for the ultrasonic characterization of rigid porous materials using reflected waves by the first interface. J. Acoust. Soc. Am. 2018, 144, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Fellah, Z.E.A.; Depollier, C.; Fellah, M.; Lauriks, W.; Chapeelon, J.-Y. Influence of dynamic tortuosity and compressibility on the propagation of transient waves in porous media. Wave Motion 2005, 41, 145–161. [Google Scholar] [CrossRef]
- Fellah, Z.E.A.; Fellah, M.; Lauriks, W.; Depollier, C.; Chapelon, J.Y.; Angel, Y.C. Solution in time domain of ultrasonic propagation equation in a porous material. Wave Motion 2003, 38, 151–163. [Google Scholar] [CrossRef]
- Kergomard, J.; Lafarge, D.; Gilbert, J. Transients in porous media: Exact and modelled time-domain Green’s functions. Acta Acust. Acust. 2013, 99, 557–571. [Google Scholar] [CrossRef] [Green Version]
- Roncen, R.; Fellah, Z.E.A.; Piot, E.; Simon, F.; Ogam, E.; Fellah, M.; Depollier, C. Inverse identification of a higher order viscous parameter of rigid porous media in the high frequency domain. J. Acoust. Soc. Am. 2019, 145, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Fellah, Z.E.A.; Fellah, M.; Mitri, F.G.; Sebaa, N.; Lauriks, W.; Depollier, C. Transient acoustic wave propagation in air-saturated porous media at low frequencies. J. Appl. Phys. 2019, 102, 084906. [Google Scholar] [CrossRef]
- Fellah, Z.E.A.; Fellah, M.; Sebaa, N.; Lauriks, W.; Depollier, C. Measuring flow resistivity of porous materials at low frequencies range via acoustic transmitted waves. J. Acoust. Soc. Am. 2006, 119, 1926–1928. [Google Scholar] [CrossRef] [PubMed]
- Sadouki, M.; Fellah, M.; Fellah, Z.E.A.; Ogam, E.; Sebaa, N.; Mitri, F.G.; Depollier, C. Measuring static thermal permeability and inertial factor of rigid porous materials. J. Acoust. Soc. Am. 2011, 130, 2627–2630. [Google Scholar] [CrossRef]
- Roncen, R.; Fellah, Z.E.; Lafarge, D.; Piot, E.; Simon, F.; Ogam, E.; Fellah, M.; Depollier, C. Acoustical modeling and Bayesian inference for rigid porous media in the low-mid frequency regime. J. Acoust. Soc. Am. 2018, 144, 3084–3101. [Google Scholar] [CrossRef]
- Fellah, Z.E.A.; Fellah, M.; Lauriks, W. Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material. J. Acoust. Soc. Am. 2003, 113, 61–72. [Google Scholar] [CrossRef]
- Cuenca, J.; Goransson, P.; De Ryck, L.; Lahivaara, T. Deterministic and statistical methods for the characterisation of poroelastic media from multi-observation sound absorption measurements. Mech. Syst. Signal Process. 2022, 163, 108186. [Google Scholar] [CrossRef]
- Fellah, Z.E.A.; Sadouki, M.; Fellah, M.; Mitri, F.G.; Ogam, E.; Depollier, C. Simultaneous determination of porosity, tortuosity, viscous and thermal characteristic lengths of rigid porous materials. J. Appl. Phys. 2013, 114, 204902. [Google Scholar] [CrossRef]
- Jaouen, L.; Gourdon, E.; Gle, P. Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements. J. Acoust. Soc. Am. 2020, 148, 1998–2005. [Google Scholar] [CrossRef] [PubMed]
- Fellah, Z.E.A.; Berger, S.; Lauriks, W.; Depollier, C.; Chapelon, J.-Y. Inverse problem in air-saturated porous media via reflected waves. Rev. Sci. Instrum. 2003, 74, 2871–2879. [Google Scholar] [CrossRef]
- Zielinski, T.G. Normalized inverse characterization of sound absorbing rigid porous media. J. Acoust. Soc. Am. 2015, 137, 3232–3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alruwaili, A.D.; Seadawy, A.R.; Ali, A.; Beinane, S.A.O. Novel Analytical Approach for the Space-Time Fractional (2+1)-Dimensional Breaking Soliton Equation via Mathematical Methods. Mathematics 2021, 9, 3253. [Google Scholar] [CrossRef]
- Shokri, A. A new eight-order symmetric two-step multiderivative method for the numerical solution of second-order IVPs with oscillating solutions. Numer. Algorithm 2018, 77, 95–109. [Google Scholar] [CrossRef]
- Bockstal, K.V. Existence of a Unique Weak Solution to a Nonlinear Non-Autonomous Time-Fractional Wave Equation (of Distributed-Order). Mathematics 2020, 8, 1283. [Google Scholar] [CrossRef]
- De Rosa, S.; Polimeni, A.; De Velli, G.; Conte, M.; Sorrentino, S.; Spaccarotella, C.; Mongiardo, A.; Sabatino, J.; Contarini, M.; Todaro, D.; et al. Reliability of Instantaneous Wave-Free Ratio (iFR) for the Evaluation of Left Main Coronary Artery Lesions. J. Clin. Med. 2019, 8, 1143. [Google Scholar] [CrossRef] [Green Version]
- Skudrzyk, E. Solution of the Wave Equation in General Spherical Coordinates. In The Foundations of Acoustics; Springer: Vienna, Austria, 1971; pp. 378–391. [Google Scholar]
- Keller, J. Stochastic equations and wave propagation in random media. In Stochastic Processess in Mathematical Physics and Engineering; Richard Ernest Bellman, American Mathematical Society: Providence, RI, USA, 1964; pp. 145–170. [Google Scholar]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J. Acoust. Soc. Am. 1956, 28, 168–178. [Google Scholar] [CrossRef]
- Biot, M.A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am. 1956, 28, 179–191. [Google Scholar] [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science Publishers: Amsterdam, The Netherlands, 1993; pp. 93–112. [Google Scholar]
- Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products Academic Press; Jeffrey, A., Zwillinger, D., Eds.; Elsevier Academic Press: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; United States Department of Commerce: Washington, DC, USA, 1964.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fellah, Z.E.A.; Fellah, M.; Roncen, R.; Ongwen, N.O.; Ogam, E.; Depollier, C. Transient Propagation of Spherical Waves in Porous Material: Application of Fractional Calculus. Symmetry 2022, 14, 233. https://doi.org/10.3390/sym14020233
Fellah ZEA, Fellah M, Roncen R, Ongwen NO, Ogam E, Depollier C. Transient Propagation of Spherical Waves in Porous Material: Application of Fractional Calculus. Symmetry. 2022; 14(2):233. https://doi.org/10.3390/sym14020233
Chicago/Turabian StyleFellah, Zine El Abiddine, Mohamed Fellah, Rémi Roncen, Nicholas O. Ongwen, Erick Ogam, and Claude Depollier. 2022. "Transient Propagation of Spherical Waves in Porous Material: Application of Fractional Calculus" Symmetry 14, no. 2: 233. https://doi.org/10.3390/sym14020233
APA StyleFellah, Z. E. A., Fellah, M., Roncen, R., Ongwen, N. O., Ogam, E., & Depollier, C. (2022). Transient Propagation of Spherical Waves in Porous Material: Application of Fractional Calculus. Symmetry, 14(2), 233. https://doi.org/10.3390/sym14020233