Multi-Condition PMSM Fault Diagnosis Based on Convolutional Neural Network Phase Tracker
Abstract
:1. Introduction
- 1.
- A phase tracker based on a CNN is proposed, which can directly obtain the fundamental wave amplitude, frequency, and phase of the stator current. This method can automatically adapt the parameters according to historical operation data and does not require a manual adjustment step in computed order tracking.
- 2.
- A method of angular domain resampling and fault spectrum feature extraction is presented, which is based on the output of the phase tracker, in which the stator current is resampled without interpolation and aligned with same fundamental frequency. The resampling error is reduced by means of proper spectrum processing. The resampling speed of this method is faster than order tracking, and it can reduce the number of fault samples needed for training and improve the accuracy of fault diagnosis of a PMSM under multiple operating conditions.
2. Preliminaries
2.1. Convolutional Neural Network
2.2. Fault Severity Level Assessment
3. Proposed Fault Diagnosis Method
3.1. CNN-Based Phase Tracker
3.2. Angular Domain Resample
3.3. Fault Feature Library Construction
3.4. Fault Diagnosis
Algorithm 1 PMSM fault diagnosis based on CNN phase tracker |
Input: PMSM stator currents, Output: Fault status, ; fault type, ; fault severity level,
|
3.5. Comparison
4. Experimental Validation and Discussion
4.1. Introduction to Experiment Platform and Data Set
4.2. Experimental Results and Analysis
4.3. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Liang, S.; Li, W.; Liang, H.; Wang, C. Faults and diagnosis methods of permanent magnet synchronous motors: A review. Appl. Sci. 2019, 9, 2116. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.T.; Xie, Y.F.; Chen, Z.W.; Peng, T.; Yang, C.H. Weak-fault diagnosis using state-transition-algorithm-based adaptive stochastic-resonance method. J. Cent. South Univ. 2019, 26, 1910–1920. [Google Scholar] [CrossRef]
- Ullah, Z.; Hur, J. A comprehensive review of winding short circuit fault and irreversible demagnetization fault detection in pm type machines. Energies 2018, 11, 3309. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, S.S.; Djerdir, A.; Ait-Amirat, Y.; Khaburi, D.A. ANN based fault diagnosis of permanent magnet synchronous motor under stator winding shorted turn. Electr. Power Syst. Res. 2015, 125, 67–82. [Google Scholar] [CrossRef]
- Gao, C.; Nie, Y.; Si, J.; Fu, Z.; Feng, H. Mode Recognition and Fault Positioning of Permanent Magnet Demagnetization for PMSM. Energies 2019, 12, 1644. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Yang, J.; Ye, H.; Zhou, W. A review of Permanent Magnet Synchronous Motor fault diagnosis. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–5. [Google Scholar]
- Ebrahimi, B.M.; Faiz, J. Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring. IEEE Trans. Power Electron. 2010, 25, 2673–2682. [Google Scholar] [CrossRef]
- Maraaba, L.S.; Twaha, S.; Memon, A.; Al-Hamouz, Z. Recognition of Stator Winding Inter-Turn Fault in Interior-Mount LSPMSM Using Acoustic Signals. Symmetry 2020, 12, 1370. [Google Scholar] [CrossRef]
- Krichen, M.; Elbouchikhi, E.; Benhadj, N.; Chaieb, M.; Benbouzid, M.; Neji, R. Motor Current Signature Analysis-Based Permanent Magnet Synchronous Motor Demagnetization Characterization and Detection. Machines 2020, 8, 35. [Google Scholar] [CrossRef]
- Ruiz, J.R.R.; Espinosa, A.G.; Romeral, L.; Cusidó, J. Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions. Electr. Power Syst. Res. 2010, 80, 1277–1285. [Google Scholar] [CrossRef]
- Barendse, P.; Pillay, P. A new algorithm for the detection of faults in permanent magnet machines. In Proceedings of the IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 823–828. [Google Scholar]
- Ding, C.; Zhao, M.; Lin, J.; Wang, B.; Liang, K. Transient feature extraction of encoder signal for condition assessment of planetary gearboxes with variable rotational speed. Measurement 2020, 151, 107206. [Google Scholar] [CrossRef]
- Wang, K.; Heyns, P.S. Application of computed order tracking, Vold–Kalman filtering and EMD in rotating machine vibration. Mech. Syst. Signal Process. 2011, 25, 416–430. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wei, Y.; Feng, K.; Wang, X.; Liu, Z. Fault diagnosis of rolling bearing under speed fluctuation condition based on Vold-Kalman filter and RCMFE. IEEE Access 2018, 6, 37349–37360. [Google Scholar] [CrossRef]
- Pezzani, C.M.; Bossio, J.M.; Castellino, A.M.; Bossio, G.R.; De Angelo, C.H. A PLL-based resampling technique for vibration analysis in variable-speed wind turbines with PMSG: A bearing fault case. Mech. Syst. Signal Process. 2017, 85, 354–366. [Google Scholar] [CrossRef]
- Hsueh, Y.M.; Ittangihal, V.R.; Wu, W.B.; Chang, H.C.; Kuo, C.C. Fault diagnosis system for induction motors by CNN using empirical wavelet transform. Symmetry 2019, 11, 1212. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Liang, K.; Ding, S.X.; Yang, C.; Peng, T.; Yuan, X. A Comparative Study of Deep Neural Network-Aided Canonical Correlation Analysis-Based Process Monitoring and Fault Detection Methods. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. [Google Scholar] [CrossRef]
- Chen, Z.; Xu, J.; Peng, T.; Yang, C. Graph Convolutional Network-Based Method for Fault Diagnosis Using a Hybrid of Measurement and Prior Knowledge. IEEE Trans. Cybern. 2021, 1–13. [Google Scholar] [CrossRef]
- Xu, K.; Feng, D.; Mi, H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 2017, 22, 2054. [Google Scholar] [CrossRef] [Green Version]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lei, Y. Data Anomaly Detection of Bridge Structures Using Convolutional Neural Network Based on Structural Vibration Signals. Symmetry 2021, 13, 1186. [Google Scholar] [CrossRef]
- Lee, H.; Jeong, H.; Kim, S.W. Detection of Interturn Short-Circuit Fault and Demagnetization Fault in IPMSM by 1-D Convolutional Neural Network. In Proceedings of the 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Macao, China, 1–4 December 2019; pp. 1–5. [Google Scholar]
- Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 115, 213–237. [Google Scholar] [CrossRef]
- Otava, L. Implementation of PMSM inter-turn short fault detection using frequency analysis of stator currents. IFAC-PapersOnLine 2016, 49, 86–91. [Google Scholar] [CrossRef]
- Cai, B.; Wang, Z.; Zhu, H.; Liu, Y.; Hao, K.; Yang, Z.; Ren, Y.; Feng, Q.; Liu, Z. Artificial Intelligence Enhanced Two-stage Hybrid Fault Prognosis Methodology of PMSM. IEEE Trans. Ind. Inform. 2021. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, R.; Lin, Z.; Peng, T.; Peng, X. A data-driven health monitoring method using multi-objective optimization and stacked autoencoder based health indicator. IEEE Trans. Ind. Inform. 2020, 17, 6379–6389. [Google Scholar] [CrossRef]
- Dineva, A.; Mosavi, A.; Gyimesi, M.; Vajda, I.; Nabipour, N.; Rabczuk, T. Fault Diagnosis of Rotating Electrical Machines Using Multi-Label Classification. Appl. Sci. 2019, 9, 5086. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Yang, C.; Peng, T.; Yang, X.; Gui, W. A fault-injection strategy for traction drive control systems. IEEE Trans. Ind. Electron. 2017, 64, 5719–5727. [Google Scholar] [CrossRef]
- Zhao, C.; Li, Y.; Wessner, M.; Rathod, C.; Pisu, P. Support-Vector Machine Approach for Robust Fault Diagnosis of Electric Vehicle Permanent Magnet Synchronous Motor. In Proceedings of the Annual Conference of the PHM Society, Virtual, Nashville, TN, USA, 9–13 November 2020; Volume 12, p. 10. [Google Scholar]
- Tian, R.; Chen, F.; Dong, S. Compound Fault Diagnosis of Stator Interturn Short Circuit and Air Gap Eccentricity Based on Random Forest and XGBoost. Math. Probl. Eng. 2021, 2021, 2149048. [Google Scholar] [CrossRef]
- Martin-Diaz, I.; Morinigo-Sotelo, D.; Duque-Perez, O.; Romero-Troncoso, R.J. An experimental comparative evaluation of machine learning techniques for motor fault diagnosis under various operating conditions. IEEE Trans. Ind. Appl. 2018, 54, 2215–2224. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
rated power | |
stator resistance | |
rotor pole pair | 4 |
d-axis inductance | |
q-axis inductance | |
stator flux linkage | |
rotational inertia | |
friction coefficient |
Settings | Range |
---|---|
Fault type | Normal, ITSF, IDF |
Condition | 500, 1000, 1500, 1800 (r/min) |
Fault severity level | 1, 2, 3 |
Methods | Validation Set | Test Set | Execution Time | ||||
---|---|---|---|---|---|---|---|
Detection | Type | Severity | Detection | Type | Severity | ||
SVM | 1.00 | 0.99 | - | 0.74 | 0.68 | - | 0.007 s |
RF | 0.99 | 0.99 | - | 0.80 | 0.47 | - | 0.008 s |
Proposed | 1.00 | 0.99 | 0.99 | 0.94 | 0.94 | 0.89 | 0.038 s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Liang, K.; Peng, T.; Wang, Y. Multi-Condition PMSM Fault Diagnosis Based on Convolutional Neural Network Phase Tracker. Symmetry 2022, 14, 295. https://doi.org/10.3390/sym14020295
Chen Z, Liang K, Peng T, Wang Y. Multi-Condition PMSM Fault Diagnosis Based on Convolutional Neural Network Phase Tracker. Symmetry. 2022; 14(2):295. https://doi.org/10.3390/sym14020295
Chicago/Turabian StyleChen, Zhiwen, Ketian Liang, Tao Peng, and Yang Wang. 2022. "Multi-Condition PMSM Fault Diagnosis Based on Convolutional Neural Network Phase Tracker" Symmetry 14, no. 2: 295. https://doi.org/10.3390/sym14020295
APA StyleChen, Z., Liang, K., Peng, T., & Wang, Y. (2022). Multi-Condition PMSM Fault Diagnosis Based on Convolutional Neural Network Phase Tracker. Symmetry, 14(2), 295. https://doi.org/10.3390/sym14020295