Low-Energy Interactions of Mesons with Participation of the First Radially Excited States in U(3) × U(3) NJL Model
Abstract
:1. Introduction
2. The Standard Nambu–Jona-Lasinio Model
2.1. The NJL Model
2.1.1. Lagrangian for Scalar, Pseudoscalar, Vector, and Axial-Vector Mesons
2.1.2. Numerical Estimates of the Model Parameters
2.2. The NJL Model
2.3. The ’t Hooft Interaction
3. The Extended NJL Model
3.1. Pseudoscalar Mesons
3.2. Vector and Axial-Vector Mesons
4. Strong Decays of Radially Excited Mesons and Meson Production in Collisions at Low Energies
4.1. Processes
4.2. Processes
4.3. Process
4.4. Process
4.5. Process
4.6. Process
4.7. Process
4.8. Processes
5. Lepton Decays
5.1. Two-Particle Lepton Decays
5.1.1. The Decays
5.1.2. The Decays
5.1.3. The Decays ,
5.2. The Decays
5.2.1. The Processes and
5.2.2. The Processes
5.2.3. The Process
5.2.4. The Process
5.2.5. The Process
5.3. The Decays
5.3.1. The Decay
5.3.2. The Decay
5.3.3. The Decays
5.3.4. The Decay
5.3.5. The Decay
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Sakurai, J.J. Theory of strong interactions. Ann. Phys. 1960, 11, 1–48. [Google Scholar] [CrossRef]
- Gell-Mann, M. Symmetries of baryons and mesons. Phys. Rev. 1962, 125, 1067–1084. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, S. Dynamical approach to current algebra. Phys. Rev. Lett. 1967, 18, 188–191. [Google Scholar] [CrossRef]
- Wess, J.; Zumino, B. Lagrangian method for chiral symmetries. Phys. Rev. 1967, 163, 1727–1735. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Oakes, R.J.; Renner, B. Behavior of current divergences under SU(3) × SU(3). Phys. Rev. 1968, 175, 2195–2199. [Google Scholar] [CrossRef] [Green Version]
- Gasiorowicz, S.; Geffen, D.A. Effective Lagrangians and field algebras with chiral symmetry. Rev. Mod. Phys. 1969, 41, 531–573. [Google Scholar] [CrossRef]
- Coleman, S.R.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. 1. Phys. Rev. 1969, 177, 2239–2247. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S.R.; Wess, J.; Zumino, B. Structure of phenomenological Lagrangians. 2. Phys. Rev. 1969, 177, 2247–2250. [Google Scholar] [CrossRef]
- Nambu, Y.; Jona-Lasinio, G. Dynamical Model of Elementary Particles Based on an Analogy with Superconductivity. 1. Phys. Rev. 1961, 122, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Eguchi, T. A New Approach to Collective Phenomena in Superconductivity Models. Phys. Rev. D 1976, 14, 2755. [Google Scholar] [CrossRef]
- Kikkawa, K. Quantum Corrections in Superconductor Models. Prog. Theor. Phys. 1976, 56, 947. [Google Scholar] [CrossRef] [Green Version]
- Ebert, D.; Volkov, M.K. Composite Meson Model with Vector Dominance Based on U(2) Invariant Four Quark Interactions. Z. Phys. C 1983, 16, 205. [Google Scholar] [CrossRef]
- Volkov, M.K. Meson Lagrangians in a Superconductor Quark Model. Ann. Phys. 1984, 157, 282–303. [Google Scholar] [CrossRef]
- Hatsuda, T.; Kunihiro, T. Possible critical phenomena associated with the chiral symmetry breaking. Phys. Lett. B 1984, 145, 7–10. [Google Scholar] [CrossRef]
- Hatsuda, T.; Kunihiro, T. Fluctuation Effects in Hot Quark Matter: Precursors of Chiral Transition at Finite Temperature. Phys. Rev. Lett. 1985, 55, 158–161. [Google Scholar] [CrossRef]
- Volkov, M.K. Low-energy Meson Physics in the Quark Model of Superconductivity Type. Sov. J. Part. Nucl. 1986, 17, 186. [Google Scholar]
- Ebert, D.; Reinhardt, H. Effective Chiral Hadron Lagrangian with Anomalies and Skyrme Terms from Quark Flavor Dynamics. Nucl. Phys. B 1986, 271, 188–226. [Google Scholar] [CrossRef]
- Vogl, U.; Weise, W. The Nambu and Jona Lasinio model: Its implications for hadrons and nuclei. Prog. Part. Nucl. Phys. 1991, 27, 195–272. [Google Scholar] [CrossRef]
- Klevansky, S.P. The Nambu-Jona-Lasinio model of quantum chromodynamics. Rev. Mod. Phys. 1992, 64, 649–708. [Google Scholar] [CrossRef]
- Volkov, M.K. Effective chiral Lagrangians and the Nambu-Jona-Lasinio model. Phys. Part. Nucl. 1993, 24, 35–58. [Google Scholar]
- Hatsuda, T.; Kunihiro, T. QCD phenomenology based on a chiral effective Lagrangian. Phys. Rep. 1994, 247, 221–367. [Google Scholar] [CrossRef] [Green Version]
- Ebert, D.; Reinhardt, H.; Volkov, M.K. Effective hadron theory of QCD. Prog. Part. Nucl. Phys. 1994, 33, 1–120. [Google Scholar] [CrossRef]
- Buballa, M. NJL model analysis of quark matter at large density. Phys. Rep. 2005, 407, 205–376. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Radzhabov, A.E. The Nambu-Jona-Lasinio model and its development. Phys. Usp. 2006, 49, 551–561. [Google Scholar] [CrossRef]
- Volkov, M.K.; Weiss, C. A Chiral Lagrangian for excited pions. Phys. Rev. D 1997, 56, 221–229. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K. The Pseudoscalar and vector excited mesons in the U(3) × U(3) chiral model. Phys. Atom. Nucl. 1997, 60, 1920–1929. [Google Scholar]
- Faddeev, L.D.; Slavnov, A.A. Gauge fields. Introduction to quantum theory. Front. Phys. 1980, 50, 1–232. [Google Scholar] [CrossRef]
- Volkov, M.K.; Osipov, A.A.; Pivovarov, A.A.; Nurlan, K. 1/NC approximation and universality of vector mesons. Phys. Rev. D 2021, 104, 034021. [Google Scholar] [CrossRef]
- Zyla, P.A.; Particle Data Group; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Groom, D.E.; Lin, C.-J.; Lugovsky, K.S.; Pianori, E.; et al. Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar]
- Volkov, M.K.; Nurlan, K.; Pivovarov, A.A. The decays τ→(K,K(1460))ντ and the value of the weak decay constants FK and FK′ in the extended NJL model. Int. J. Mod. Phys. A 2019, 34, 1950137. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Nagy, M.; Yudichev, V.L. Scalar mesons in the Nambu-Jona-Lasinio model with ’t Hooft interaction. Nuovo Cim. A 1999, 112, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Yudichev, V.L. Radially excited scalar, pseudoscalar, and vector meson nonets in a chiral quark model. Phys. Part. Nucl. 2000, 31, 282–311. [Google Scholar]
- ’t Hooft, G. Symmetry Breaking Through Bell-Jackiw Anomalies. Phys. Rev. Lett. 1976, 37, 8–11. [Google Scholar] [CrossRef]
- Volkov, M.K.; Yudichev, V.L. Strong decays of scalar glueball in a scale invariant chiral quark model. Phys. Atom. Nucl. 2001, 64, 2006–2019. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Yudichev, V.L. Scalar mesons and glueball in a quark model allowing for gluon anomalies. Eur. Phys. J. A 2001, 10, 109–117. [Google Scholar] [CrossRef]
- Achasov, N.N. On nature of scalar a0(980) and f0(980) mesons. Nucl. Phys. A 2000, 675, 279C–284C. [Google Scholar] [CrossRef] [Green Version]
- Agaev, S.S.; Azizi, K.; Sundu, H. The nonet of the light scalar tetraquarks: The mesons a0(980) and K0*(800). Phys. Lett. B 2019, 789, 405–412. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, K.S.; Kim, H. Testing the tetraquark mixing framework from QCD sum rules for a0(980). Phys. Rev. D 2019, 100, 034021. [Google Scholar] [CrossRef] [Green Version]
- Vainshtein, A.I.; Zakharov, V.I. Partial conservation of axial current in processes involving soft mesons. Sov. Phys. Usp. 1970, 13, 73. [Google Scholar] [CrossRef]
- Clegg, A.B.; Donnachie, A. Higher vector meson states produced in electron—Positron annihilation. Z. Phys. C 1994, 62, 455–470. [Google Scholar] [CrossRef]
- Arbuzov, A.B.; Kuraev, E.A.; Volkov, M.K. Processes e+e-→π0(π0′)γ in the NJL model. Eur. Phys. J. A 2011, 47, 103. [Google Scholar] [CrossRef] [Green Version]
- Achasov, M.N.; Berdyugin, A.V.; Bozhenok, A.V.; Bukin, D.A.; Burdin, S.V.; Dimova, T.V.; Druzhinin, V.P.; Dubrovin, M.S.; Gaponenko, I.A.; Golubev, V.B.; et al. Experimental study of the processes e+e-→ϕ→ηγ,π0γ gamma at VEPP-2M. Eur. Phys. J. C 2000, 12, 25–33. [Google Scholar] [CrossRef]
- Akhmetshin, R.R.; Aulchenko, V.M.; Banzarov, V.S.; Baratt, A.; Barkov, L.M.; Baru, S.E.; Bashtovoy, N.S.; Bondar, A.E.; Bondarev, D.V.; Bragin, A.V.; et al. Study of the process e+e-→ωπ→ππγ in c.m. energy range 920-MeV–1380-MeV at CMD-2. Phys. Lett. B 2003, 562, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Ahmadov, A.I.; Kostunin, D.G.; Volkov, M.K. Processes of e+e-→[η,η′,η(1295),η(1475)]γ in the extended Nambu-Jona-Lasinio model. Phys. Rev. C 2013, 87, 045203, Erratum in Phys. Rev. C 2014, 89, 039901. [Google Scholar] [CrossRef]
- Achasov, M.N.; Aulchenko, V.M.; Beloborodov, K.I.; Berdyugin, A.V.; Bogdanchikov, A.G.; Bozhenok, A.V.; Bukin, D.A.; Dimova, T.V.; Druzhinin, V.P.; Golubev, V.B.; et al. Study of the e+e-→ηγ process with SND detector at the VEPP-2M e+e- collider. Phys. Rev. D 2006, 74, 014016. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Nurlan, K.; Pivovarov, A.A. Low-energy process e+e-→K+K- in the extended Nambu-Jona-Lasinio model. Phys. Rev. C 2018, 98, 015206. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; Kolomensky, Y.G.; et al. Precision measurement of the e+e-→K+K-(γ) cross section with the initial-state radiation method at BABAR. Phys. Rev. D 2013, 88, 032013. [Google Scholar] [CrossRef] [Green Version]
- Achasov, M.N.; Aulchenko, V.M.; Barnyakov, A.Y.; Barnyakov, M.Y.; Beloborodov, K.I.; Berdyugin, A.V.; Berkaev, D.E.; Bogdanchikov, A.G.; Botov, A.A.; Buzykaev, A.R.; et al. Measurement of the e+e-→K+K- cross section in the energy range s=1.05-2.0 GeV. Phys. Rev. D 2016, 94, 112006. [Google Scholar] [CrossRef] [Green Version]
- Kozyrev, E.A.; Solodov, E.P.; Akhmetshin, R.R.; Amirkhanov, A.N.; Anisenkov, A.V.; Aulchenko, V.M.; Banzarov, V.S.; Bashtovoy, N.S.; Berkaev, D.E.; Bondar, A.E.; et al. Study of the process e+e-→K+K- in the center-of-mass energy range 1010–1060~MeV with the CMD-3 detector. Phys. Lett. B 2018, 779, 64–71. [Google Scholar] [CrossRef]
- Arbuzov, A.B.; Kuraev, E.A.; Volkov, M.K. Production of ωπ0 pair in electron-positron annihilation. Phys. Rev. C 2011, 83, 048201. [Google Scholar] [CrossRef]
- Achasov, M.N.; Beloborodov, K.I.; Berdyugin, A.V.; Bogdanchikov, A.G.; Bozhenok, A.V.; Bukin, D.A.; Burdin, S.V.; Golubev, V.B.; Dimova, T.V.; Drozdetsky, A.A.; et al. The Process e+e-→ωπ→ππγ up to 1.4-GeV. Phys. Lett. B 2000, 486, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Ambrosino, F.; Antonelli, A.; Antonelli, M.; Archilli, F.; Beltrame, P.; Bencivenni, G.; Bertolucci, S.; Bini, C.; Bloise, C.; Bocchetta, S.; et al. Study of the process e+e-→ωπ0 in the ϕ-meson mass region with the KLOE detector. Phys. Lett. B 2008, 669, 223–228. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Y.J.; Zhao, Q. Study of isospin violating ϕ excitation in e+e-→ωπ0. J. Phys. G 2009, 36, 085008. [Google Scholar] [CrossRef] [Green Version]
- Bisello, D.; Busetto, G.; Castro, A.; Nigro, M.; Pescara, L.; Sartori, P.; Stanco, L.; Antonelli, A.; Baldini, R.; Biagini, M.E.; et al. e+e- annihilation into multi-hadrons in the 1350-MeV–2400-MeV energy range. Nucl. Phys. B Proc. Suppl. 1991, 21, 111–117. [Google Scholar]
- Volkov, M.K.; Pivovarov, A.A. The processes e+e-→K±(K*∓(892),K*∓(1410)) and e+e-→(η,η′(958))(ϕ(1020),ϕ(1680)) in the extended Nambu-Jona-Lasinio model. Int. J. Mod. Phys. A 2016, 31, 1650155. [Google Scholar] [CrossRef] [Green Version]
- Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; et al. Measurements of e+e-→K+K-η, K+K-π0 and Ks0K±π∓ cross-sections using initial state radiation events. Phys. Rev. D 2008, 77, 092002. [Google Scholar] [CrossRef] [Green Version]
- Ivanov, V.L.; Akhmetshin, R.R.; Amirkhanov, A.N.; Anisenkov, A.V.; Aulchenko, V.M.; Banzarov, V.S.; Bashtovoy, N.S.; Berkaev, D.E.; Bragin, A.V.; Eidelman, S.I.; et al. Preliminary results of the cross-section measurement of e+e-→ϕ(1020)η process with the CMD-3 detector at VEPP-2000 collider. Phys. Atom. Nucl. 2016, 79, 251–259. [Google Scholar]
- Volkov, M.K.; Pivovarov, A.A.; Nurlan, K. On the mixing angle of the vector mesons ω(782) and ϕ(1020). Mod. Phys. Lett. A 2020, 35, 2050200. [Google Scholar] [CrossRef]
- Benayoun, M.; David, P.; DelBuono, L.; Leitner, O.; O’Connell, H.B. The Dipion Mass Spectrum In e+e- Annihilation and tau Decay: A Dynamical (ρ, ω, ϕ) Mixing Approach. Eur. Phys. J. C 2008, 55, 199–236. [Google Scholar] [CrossRef] [Green Version]
- Benayoun, M.; David, P.; DelBuono, L.; Leitner, O. A Global Treatment Of VMD Physics Up To The phi: I. e+ e- Annihilations, Anomalies And Vector Meson Partial Widths. Eur. Phys. J. C 2010, 65, 211–245. [Google Scholar]
- Klingl, F.; Kaiser, N.; Weise, W. Effective Lagrangian approach to vector mesons, their structure and decays. Z. Phys. A 1996, 356, 193–206. [Google Scholar] [CrossRef]
- Volkov, M.K.; Pivovarov, A.A.; Osipov, A.A. The production of the f1(1285)γ and a1(1260)γ in colliding e+e--beams in threshold domain. Int. J. Mod. Phys. A 2017, 32, 1750123. [Google Scholar] [CrossRef] [Green Version]
- Asner, D.M.; Eppich, A.; Gronberg, J.; Hill, T.S.; Lange, D.J.; Morrison, R.J.; Nelson, H.N.; Nelson, T.K.; Roberts, D.; Behrens, B.H.; et al. Hadronic structure in the decay τ→ντπ-π0π0 and the sign of the tau-neutrino helicity. Phys. Rev. D 2000, 61, 012002. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Nurlan, K. The decays τ→ντ(K*(892),K*(1410),K1(1270),K1(1650),a1(1260),a1(1640)) in the Extended Nambu-Jona-Lasinio Model. Phys. Part. Nucl. Lett. 2017, 14, 677–680. [Google Scholar]
- Kuhn, J.H.; Santamaria, A. Tau decays to pions. Z. Phys. C 1990, 48, 445–452. [Google Scholar] [CrossRef] [Green Version]
- Bartoš, E.; Dubnička, S.; Dubničková, A.Z.; Hayashii, H. The mass and width differences of the neutral and charged ρ(770), ρ(1450) and ρ(1700) mesons from e+e-→π+π- and ντπ-π0 processes. Int. J. Mod. Phys. A 2017, 32, 1750154. [Google Scholar] [CrossRef]
- Miranda, J.A.; Roig, P. Effective-field theory analysis of the τ-→π-π0ντ decays. J. High Energy Phys. 2017, 11, 038. [Google Scholar]
- Dai, L.R.; Pavao, R.; Sakai, S.; Oset, E. τ-→ντM1M2, with M1,M2 pseudoscalar or vector mesons. Eur. Phys. J. A 2019, 55, 20. [Google Scholar] [CrossRef]
- Volkov, M.K.; Arbuzov, A.B.; Pivovarov, A.A. τ-→π-π0ντ and e+e-→π+π- Processes in the Chiral Nambu—Jona-Lasinio Model Including the Interaction of Pions in the Final State. JETP Lett. 2020, 112, 457–462. [Google Scholar]
- Achasov, M.N.; Beloborodov, K.I.; Berdyugin, A.V.; Bogdanchikov, A.G.; Bozhenok, A.V.; Bukin, A.D.; Bukin, D.A.; Dimova, T.V.; Druzhinin, V.P.; Golubev, V.B.; et al. Study of the process e+e-→π+π- in the energy region 400 < s**(1/2) < 1000-MeV. J. Exp. Theor. Phys. 2005, 101, 1053–1070. [Google Scholar]
- Ablikim, M.; Achasov, M.N.; Adlarson, P.; Ai, X.C.; Albayrak, O.; Ahmed, S.; Albrecht, M.; Ambrose, D.J.; Aliberti, R.; Amoroso, A.; et al. Measurement of the e+e-→π+π- cross section between 600 and 900 MeV using initial state radiation. Phys. Lett. B 2016, 753, 629–638, Erratum in Phys. Lett. B 2021, 812, 135982. [Google Scholar]
- Bramon, A.; Narison, S.; Pich, A. The τ→ντηπ Process in and Beyond QCD. Phys. Lett. B 1987, 196, 543–546. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, H.; Rupertsberger, H. Isospin breaking in chiral perturbation theory and the decays η→πlν and τ→ηπν. Z. Phys. C 1995, 68, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Nussinov, S.; Soffer, A. Estimate of the branching fraction τ→ηπνtau, the a0(980), and non-standard weak interactions. Phys. Rev. D 2008, 78, 033006. [Google Scholar] [CrossRef] [Green Version]
- Nussinov, S.; Soffer, A. Estimate of the Branching Fraction of τ→πη′ντ. Phys. Rev. D 2009, 80, 033010. [Google Scholar] [CrossRef] [Green Version]
- Paver, N.; Riazuddin. On meson dominance in the second class’ τ→ηπνtau decay. Phys. Rev. D 2010, 82, 057301. [Google Scholar] [CrossRef] [Green Version]
- Paver, N.; Riazuddin. On the branching ratio of the second class’ τ->η′πντ decay. Phys. Rev. D 2011, 84, 017302. [Google Scholar] [CrossRef] [Green Version]
- Descotes-Genon, S.; Moussallam, B. Analyticity of ηπ isospin-violating form factors and the τ→ηπν second-class decay. Eur. Phys. J. C 2014, 74, 2946. [Google Scholar] [CrossRef] [Green Version]
- Escribano, R.; Gonzalez-Solis, S.; Roig, P. Predictions on the second-class current decays τ-→π-η(′)ντ. Phys. Rev. D 2016, 94, 034008. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Tomé, G.; López Castro, G.; Roig, P. G-parity breaking in τ-→η(′)π-ντ decays induced by the η(′)γγ form factor. Phys. Rev. D 2017, 96, 053003. [Google Scholar] [CrossRef] [Green Version]
- Garcés, E.A.; Hernández Villanueva, M.; López Castro, G.; Roig, P. Effective-field theory analysis of the τ-→η(′)π-ντ decays. J. High Energy Phys. 2017, 12, 027. [Google Scholar] [CrossRef] [Green Version]
- del Amo Sanchez, P.; Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; et al. Studies of τ→ηK-ντ and τ→ηπ-ντ at BaBar and a search for a second-class current. Phys. Rev. D 2011, 83, 032002. [Google Scholar] [CrossRef] [Green Version]
- Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; et al. Study of high-multiplicity 3-prong and 5-prong τ decays at BABAR. Phys. Rev. D 2012, 86, 092010. [Google Scholar] [CrossRef] [Green Version]
- Hayasaka, K. Second class current in τ→πηντ analysis and measurement of τ→hh′h′′ν from Belle: Electroweak physics from Belle. EPS-HEP2009 2009, 374. [Google Scholar]
- Abe, T.; Adachi, I.; Adamczyk, K.; Ahn, S.; Aihara, H.; Akai, K.; Aloi, M.; Andricek, L.; Aoki, K.; Arai, Y.; et al. Belle II Technical Design Report. arXiv 2010, arXiv:1011.0352. [Google Scholar]
- Kou, E.; Urquijo, P.; Altmannshofer, W.; Beaujean, F.; Bell, G.; Beneke, M.; Bigi, I.I.; Bishara, F.; Blanke, M.; Bobeth, C.; et al. The Belle II Physics Book. Prog. Theor. Exp. Phys. 2019, 2019, 123C01, Erratum in Prog. Theor. Exp. Phys. 2020, 2020, 029201.. [Google Scholar]
- Finkemeier, M.; Mirkes, E. The Scalar contribution to τ→K-πντ. Z. Phys. C 1996, 72, 619–626. [Google Scholar] [CrossRef]
- Jamin, M.; Pich, A.; Portoles, J. Spectral distribution for the decay τ→ντKπ. Phys. Lett. B 2006, 640, 176–181. [Google Scholar] [CrossRef]
- Boito, D.R.; Escribano, R.; Jamin, M. Kπ vector form-factor, dispersive constraints and τ→ντKπ decays. Eur. Phys. J. C 2009, 59, 821–829. [Google Scholar] [CrossRef]
- Volkov, M.K.; Pivovarov, A.A. Decay τ→Kπντ in the Nambu-Jona-Lasinio model including the interaction of mesons in the final state. Pisma Zh. Eksp. Teor. Fiz. 2021, 113, 777–783. [Google Scholar]
- Volkov, M.K.; Pivovarov, A.A. τ→K-ηντ Decay in the Extended Nambu–Jona-Lasinio Model Including the Final-State Interaction. JETP Lett. 2021, 114, 167–172. [Google Scholar]
- Li, B.A. Theory of tau mesonic decays. Phys. Rev. D 1997, 55, 1436–1452. [Google Scholar] [CrossRef]
- Escribano, R.; Gonzalez-Solis, S.; Roig, P. τ-→K-η(′)ντ decays in Chiral Perturbation Theory with Resonances. J. High Energy Phys. 2013, 10, 039. [Google Scholar]
- Volkov, M.K.; Pivovarov, A.A. Calculation of the Width of the τ→K-K0ντ Decay in the Extended Nambu–Jona-Lasinio Model with Estimation of the Contribution from the Final-State Interaction. JETP Lett. 2021, 114, 309–313. [Google Scholar]
- Dubnička, S.; Dubničková, A.Z. Analyticity in a phenomenology of electro-weak structure of hadrons. Acta Phys. Slov. 2010, 60, 1–153. [Google Scholar]
- Gonzàlez-Solís, S.; Miranda, A.; Rendón, J.; Roig, P. Effective-field theory analysis of the τ-→K-(η(′),K0)ντ decays. Phys. Rev. D 2020, 101, 034010. [Google Scholar] [CrossRef] [Green Version]
- Castro, G.L.; Falcon, D.A.L. VMD description of τ→(ω,ϕ)πντ decays and the omega-phi mixing angle. Phys. Rev. D 1996, 54, 4400–4402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Tlalpa, A.; Lopez-Castro, G. (ω, ϕ) P- decays of τ leptons. Phys. Rev. D 2008, 77, 113011. [Google Scholar] [CrossRef]
- Guo, Z.H. Study of τ→VPντ in the framework of resonance chiral theory. Phys. Rev. D 2008, 78, 033004. [Google Scholar] [CrossRef] [Green Version]
- Buskulic, D.; De Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.P.; Lucotte, A.; Minard, M.N.; Nief, J.Y.; Odier, P.; et al. A Study of τ decays involving η and ω mesons. Z. Phys. C 1997, 74, 263–273. [Google Scholar]
- Edwards, K.W.; Janicek, R.; Patel, P.M.; Sadoff, A.J.; Ammar, R.; Baringer, P.S.; Bean, A.; Besson, D.; Davis, R.; Kotov, S.; et al. Resonant structure of τ→3ππ0ντ and τ→ωπντ decays. Phys. Rev. D 2000, 61, 072003. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Arbuzov, A.B.; Kostunin, D.G. The decay τ→πων in the extended NJL model. Phys. Rev. D 2012, 86, 057301. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Pivovarov, A.A. On the Dependence of the Widths of the τ→[ρ(770),ρ(1450)]πντ Decays on the Parameters of the Intermediate a1. Meson. Pisma Zh. Eksp. Teor. Fiz. 2019, 109, 219–222, Erratum in JETP Lett. 2019, 109, 821.. [Google Scholar]
- Ivanov, Y.P.; Osipov, A.A.; Volkov, M.K. The Decay τ→3πντ and Characteristics of A1 Meson. Z. Phys. C 1991, 49, 563–568. [Google Scholar] [CrossRef]
- Osipov, A.A. τ→ντρ0π- decay in the Nambu-Jona-Lasinio model. Phys. Rev. D 2019, 99, 034023. [Google Scholar] [CrossRef] [Green Version]
- Volkov, M.K.; Pivovarov, A.A.; Nurlan, K. The decays τ→[ω(782),ϕ(1020)]K-ντ in the extended NJL model. Eur. Phys. J. A 2019, 55, 165. [Google Scholar] [CrossRef]
- Volkov, M.K.; Osipov, A.A. Decays of the b,h,h’,q1, and q2 mesons in the quark-model of the superconducting type. Sov. J. Nucl. Phys. 1985, 41, 500–503. [Google Scholar]
- Arms, K.E.; Gan, K.K.; Severini, H.; Asner, D.M.; Dytman, S.A.; Love, W.; Mehrabyan, S.; Mueller, J.A.; Savinov, V.; Li, Z.; et al. Study of tau decays to four-hadron final states with kaons. Phys. Rev. Lett. 2005, 94, 241802. [Google Scholar]
- Inami, K.; Abe, K.; Adachi, I.; Aihara, H.; Anipko, D.; Arinstein, K.; Aulchenko, V.; Aushev, T.; Bahinipati, S.; Bakich, A.M.; et al. First Observation of the Decay τ→ϕK-ντ. Phys. Lett. B 2006, 643, 5–10. [Google Scholar] [CrossRef]
- Aubert, B.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E. Exclusive branching fraction measurements of semileptonic tau decays into three charged hadrons, τ→ϕπ-ντ and τ→ϕK-ντ. Phys. Rev. Lett. 2008, 100, 011801. [Google Scholar]
- Volkov, M.K.; Pivovarov, A.A.; Nurlan, K. The decay τ→K*-(892)ηντ in the NJL model. Nucl. Phys. A 2020, 1000, 121810. [Google Scholar] [CrossRef]
- Volkov, M.K.; Pivovarov, A.A.; Nurlan, K. The decay τ→K*0(892)K-ντ in the extended NJL model. Int. J. Mod. Phys. A 2020, 35, 2050035. [Google Scholar] [CrossRef]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory to One Loop. Ann. Phys. 1984, 158, 142. [Google Scholar] [CrossRef] [Green Version]
- Gasser, J.; Leutwyler, H. Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark. Nucl. Phys. B 1985, 250, 465–516. [Google Scholar] [CrossRef] [Green Version]
- Ecker, G.; Gasser, J.; Pich, A.; de Rafael, E. The Role of Resonances in Chiral Perturbation Theory. Nucl. Phys. B 1989, 321, 311–342. [Google Scholar] [CrossRef] [Green Version]
0.71 | 0.62 | −0.32 | 0.56 | |
0.11 | −0.87 | −0.48 | −0.54 | |
0.62 | 0.19 | 0.56 | −0.67 | |
0.06 | −0.66 | 0.3 | 0.82 |
Decays | Decay Width in the Extended NJL Model, MeV | Experiment, MeV |
---|---|---|
220 | 200–600 [29] | |
22 | – | |
75 | 52–78 [40] | |
225 | [40] | |
90 | <95.52 [29] | |
20 | [29] | |
90 | ∼109 [29] | |
50 | ∼34 [29] | |
90 | – | |
10 | – |
1.43 keV | 0.33 keV | |
0.07 keV | 1.63 keV |
Decay | Decay Width in the Extended NJL Model, MeV | ||
---|---|---|---|
100 | 116 | ||
Decay | Decay Width in the NJL Model, MeV | Experiment PDG [29], MeV |
---|---|---|
– | ||
– | ||
– | ||
– | ||
– |
Br () | ||||
---|---|---|---|---|
0.54 | 0.52 | 2.02 | 1.97 | |
A | 4.73 | 4.47 | 7.49 | 8.59 |
+ A | 3.08 | 3.27 | 2.12 | 2.94 |
0.66 | 0.64 | 0.84 | 0.82 | |
V | 1.99 | 1.94 | 0.89 | 0.86 |
+ V | 0.37 | 0.36 | 2.6 × | 2.5 × |
P | 0.57 | 0.53 | 0.66 | 0.61 |
Ground | 3.83 | 3.96 | 2.57 | 3.34 |
5.4 × | 5.2 × | 0.74 | 0.72 | |
0.31 | 0.3 | 18.1 × | 17.7 × | |
8.6 × | 6.1 × | 1.6 × | 1.2 | |
Excited | 0.32 | 0.31 | 0.76 | 0.74 |
Total | 3.79 | 3.95 | 3.15 | 4.04 |
Experiment | [29] | [29] | ||
[109] | ||||
[110] |
Channels | Br () |
---|---|
A | 1.21 |
V | |
P | 0.04 |
Total | 1.23 |
Experiment | [29] |
Channels | Br () × | |
---|---|---|
A | 1.01 | 1.01 |
V | ||
P | 0.09 | 0.09 |
The phase | ||
Total | 1.99 | 1.23 |
Experiment | [29] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Volkov, M.K.; Pivovarov, A.A.; Nurlan, K. Low-Energy Interactions of Mesons with Participation of the First Radially Excited States in U(3) × U(3) NJL Model. Symmetry 2022, 14, 308. https://doi.org/10.3390/sym14020308
Volkov MK, Pivovarov AA, Nurlan K. Low-Energy Interactions of Mesons with Participation of the First Radially Excited States in U(3) × U(3) NJL Model. Symmetry. 2022; 14(2):308. https://doi.org/10.3390/sym14020308
Chicago/Turabian StyleVolkov, Mikhail Konstantinovich, Aleksey Aleksandrovich Pivovarov, and Kanat Nurlan. 2022. "Low-Energy Interactions of Mesons with Participation of the First Radially Excited States in U(3) × U(3) NJL Model" Symmetry 14, no. 2: 308. https://doi.org/10.3390/sym14020308
APA StyleVolkov, M. K., Pivovarov, A. A., & Nurlan, K. (2022). Low-Energy Interactions of Mesons with Participation of the First Radially Excited States in U(3) × U(3) NJL Model. Symmetry, 14(2), 308. https://doi.org/10.3390/sym14020308