Conformer Selection by Electrostatic Hexapoles: A Theoretical Study on 1-Chloroethanol and 2-Chloroethanol
Abstract
:1. Introduction
2. Background
2.1. Conformers and ab Initio Calculations
2.2. Asymmetric-Top Molecules
2.3. The Stark Effect
2.4. Focusing Curves and Trajectory Simulations
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kramer, H.K.; Bernstein, R.B. Focusing and orientation of symmetric-top molecules with the electric six-pole field. J. Chem. Phys. 1965, 742, 767. [Google Scholar] [CrossRef]
- Brooks, P.R.; Jones, E.M.; Smith, K. Orienting polar molecules in molecular beams Symmetric tops. J. Chem. Phys. 1969, 51, 3073. [Google Scholar] [CrossRef]
- Hain, T.D.; Weibel, M.A.; Backstrand, K.M.; Curtiss, T.J. Rotational state selection and orientation of OH and OD radicals by electric hexapole beam-focusing. J. Phys. Chem. A 1997, 101, 7674–7683. [Google Scholar] [CrossRef]
- Hashinokuchi, M.; Che, D.C.; Watanabe, D.; Fukuyama, T.; Koyano, I.; Shimizu, Y.; Woelke, A.; Kasai, T. Single |JΩM > state-selection of OH radicals using an electrostatic hexapole field. Phys. Chem. Chem. Phys. 2003, 5, 3911–3915. [Google Scholar] [CrossRef]
- Ohoyama, H.; Ogawa, T.; Kasai, T. A single rotational state analysis of the state-selected CH3I beam: A new Monte Carlo simulation including the second-order stark effect. J. Phys. Chem. 1995, 99, 13606–13610. [Google Scholar] [CrossRef]
- Imura, K.; Ohoyama, H.; Kasai, T. Structures and its dipole moments of half-sandwich type metal–benzene (1:1) complexes determined by 2-m long electrostatic hexapole. Chem. Phys. 2004, 301, 183–187. [Google Scholar] [CrossRef]
- Tsai, P.Y. On the state selection of linear triatomic molecules by electrostatic hexapole fields. J. Chem. Phys. 2016, 145, 104311. [Google Scholar] [CrossRef]
- Hain, T.D.; Moision, R.M.; Curtiss, T.J. Hexapole state-selection and orientation of asymmetric top molecules: CH2F2. J. Chem. Phys. 1999, 111, 6797. [Google Scholar] [CrossRef]
- Che, D.C.; Palazzetti, F.; Okuno, Y.; Aquilanti, V.; Kasai, T. Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide. J. Phys. Chem. A 2010, 114, 3280–3286. [Google Scholar] [CrossRef]
- Che, D.-C.; Kanda, K.; Palazzetti, F.; Aquilanti, V.; Kasai, T. Electrostatic hexapole state-selection of the asymmetric-top molecule propylene oxide: Rotational and orientational distributions. Chem. Phys. 2012, 399, 180–192. [Google Scholar] [CrossRef]
- Palazzetti, F.; Maciel, G.S.; Kanda, K.; Nakamura, M.; Che, D.C.; Kasai, T.; Aquilanti, V. Control of conformers combining cooling by supersonic expansion of seeded molecular beams with hexapole selection and alignment: Experiment and theory on 2-butanol. Phys. Chem. Chem. Phys. 2014, 16, 9866–9875. [Google Scholar] [CrossRef]
- Imura, K.; Kasai, T.; Ohoyama, H.; Naaman, R. Focusing of DCl and HCl dimers by an electrostatic hexapole field: The role of the tunneling motion. J. Chem. Phys. 1999, 110, 355–358. [Google Scholar] [CrossRef]
- Rakitzis, T.P.; van den Brom, A.J.; Janssen, M.H.M. Directional dynamics in the photodissociation of oriented molecules. Science 2004, 303, 1852–1854. [Google Scholar] [CrossRef] [PubMed]
- Van Leuken, J.J.; van Amerom, F.H.W.; Bulthuis, J.; Snijders, J.G.; Stolte, S. Parity-resolved rotationally inelastic collisions of hexapole state-selected NO (2Π1/2, J = 1/2−) with Ar. J. Phys. Chem. 1995, 99, 15573–15579. [Google Scholar] [CrossRef]
- Nagamachi, Y.; Ohoyama, H.; Ikejiri, K.; Kasai, T. Rotational state-resolved reaction cross-section in the reactions of state-selected CH with NO and with O2. J. Chem. Phys. 2005, 122, 064307. [Google Scholar] [CrossRef] [PubMed]
- Ohoyama, H.; Nagamachi, Y.; Yamakawa, K.; Kasai, T. Collision energy dependence of the rotational-state-resolved cross section in the CH(v = 0, J, Fi) + O2 → OH(A) + CO reaction. Phys. Chem. Chem. Phys. 2009, 11, 10281–10285. [Google Scholar] [CrossRef]
- Tsai, P.Y.; Che, D.C.; Nakamura, M.; Lin, K.C.; Kasai, T. Orientation dependence in the four-atom reaction of OH + HBr using the single-state oriented OH radical beam. Phys. Chem. Chem. Phys. 2010, 12, 2532–2534. [Google Scholar] [CrossRef]
- Tsai, P.Y.; Che, D.C.; Nakamura, M.; Lin, K.C.; Kasai, T. Orientation dependence for Br formation in the reaction of oriented OH radical with HBr molecule. Phys. Chem. Chem. Phys. 2011, 13, 1419–1423. [Google Scholar] [CrossRef]
- Nakamura, M.; Yang, S., Jr.; Tsai, P.Y.; Kasai, T.; Lin, K.C.; Che, D.C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V. Hexapole-oriented asymmetric-top molecules and their stereodirectional photodissociation dynamics. J. Phys. Chem. A 2016, 120, 5389–5398. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Yang, S., Jr.; Lin, K.C.; Kasai, T.; Che, D.C.; Lombardi, A.; Palazzetti, F.; Aquilanti, V. Stereodirectional images of molecules oriented by a variable-voltage hexapolar field: Fragmentation channels of 2-bromobutane electronically excited at two photolysis wavelengths. J. Chem. Phys. 2017, 17, 012917. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Palazzetti, F.; Tsai, P.Y.; Yang, S., Jr.; Lin, K.C.; Kasai, T.; Che, D.C.; Lombardi, A.; Aquilanti, V. Vectorial imaging of the photodissociation of 2-bromobutane oriented via hexapolar state selection. Phys. Chem. Chem. Phys. 2019, 21, 14164–14172. [Google Scholar] [CrossRef] [PubMed]
- Che, D.C.; Nakamura, M.; Chang, H.P.; Lin, K.C.; Kasai, T.; Aquilanti, V.; Palazzetti, F. UV Photodissociation of Halothane in a Focused Molecular Beam: Space-Speed Slice Imaging of Competitive Bond Breaking into Spin–Orbit-Selected Chlorine and Bromine Atoms. J. Phys. Chem. A 2020, 124, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Brouard, M.; Parker, D.H.; van der Meerakker, S.Y.T. Taming molecular collisions using electric and magnetic fields. Chem. Soc. Rev. 2014, 43, 7279–7294. [Google Scholar] [CrossRef]
- Chang, Y.P.; Długołęcki, K.; Küpper, J.; Rösch, D.; Wild, D.; Willitsch, S. Specific chemical reactivities of spatially separated 3-aminophenol conformers with cold Ca+ ions. Science 2013, 342, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Rösch, D.; Willitsch, S.; Chang, Y.-P.; Küpper, J. Chemical reactions of conformationally selected 3-aminophenol molecules in a beam with Coulomb-crystallized Ca+ ions. J. Chem. Phys. 2014, 140, 124202. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Kilaj, A.; He, L.; Długołęcki, K.; Willitsch, S.; Küpper, J. Spatial separation of the conformers of methyl vinyl ketone. J. Phys. Chem. A 2020, 124, 8341–8345. [Google Scholar] [CrossRef]
- Kilaj, A.; Gao, H.; Tahchieva, D.; Ramakrishnan, R.; Bachmann, D.; Gillingham, D.; von Lilienfeld, O.A.; Küpper, J.; Willitsch, S. Quantum-chemistry-aided identification, synthesis and experimental validation of model systems for conformationally controlled reaction studies: Separation of the conformers of 2,3-dibromobuta-1,3-diene in the gas phase. Phys. Chem. Chem. Phys. 2020, 22, 13431–13439. [Google Scholar] [CrossRef] [PubMed]
- Kilaj, A.; Wang, A.; Straňàk, P.; Schwilk, M.; Rivero, U.; Xu, L.; von Lilienfeld, O.A.; Küpper, J.; Willitsch, S. Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions. Nat. Commun. 2021, 12, 6047. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.H.; Liu, H.T.; Ning, C.G.; Wang, L.S. Conformation-Selective Resonant Photoelectron Spectroscopy via Dipole-Bound States of Cold Anions. J. Phys. Chem. Lett. 2015, 6, 2153–2157. [Google Scholar] [CrossRef]
- Zhu, G.Z.; Huang, D.L.; Wang, L.S. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide. J. Chem. Phys. 2017, 147, 013910. [Google Scholar] [CrossRef] [Green Version]
- Brand, C.; Stickler, B.A.; Knobloch, C.; Shayegi, A.; Hornberg, K.; Arndt, M. Conformer Selection by Matter-Wave Interference. Phys. Rev. Lett. 2018, 121, 173002. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, A.; Palazzetti, F. Chirality in molecular collision dynamics. J. Phys. Cond. Matter 2018, 30, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Liu, K.; Caracciolo, A.; Casavecchia, P. Crossed beam polyatomic reaction dynamics: Recent advances and new insights. Chem. Soc. Rev. 2017, 46, 7517–7547. [Google Scholar] [CrossRef] [PubMed]
- Cappelletti, D.; Cinti, A.; Nicoziani, A.; Falcinelli, S.; Pirani, F. Molecular Beam Scattering Experiments as a Sensitive Probe of the Interaction in Bromine–Noble Gas Complexes. Front. Chem. 2019, 7, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IUPAC Gold Book. Available online: http://goldbook.iupac.org/ (accessed on 1 February 2022).
- Salta, Z.; Kosmas, A.M.; Ventura, O.N.; Barone, V. Computational Evidence Suggests That 1-Chloroethanol May Be an Intermediate in the Thermal Decomposition of 2-Chloroethanol into Acetaldehyde and HCl. J. Phys. Chem. A 2019, 123, 1983–1998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petsis, G.; Salta, Z.; Kosmas, A.M.; Ventura, O.N. Theoretical study of the microhydration of 1-chloro and 2-chloro ethanol as a clue for their relative propensity toward dehalogenation. Int. J. Quant. Chem. 2019, 119, e25931. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Azrak, R.G.; Wilson, E.B. Microwave Spectra and Intramolecular Hydrogen Bonding in the 2-Haloethanols: Molecular Structure and Quadrupole Coupling Constants for 2-Chloroethanol and 2-Bromoethanol. J. Chem. Phys. 1970, 52, 5299–5316. [Google Scholar] [CrossRef]
- Townes, C.H.; Schawlow, A.L. Microwave Spectroscopy; Dover Publications, Inc.: New York, NY, USA, 1975. [Google Scholar]
- Atkinson, K.A. An Introduction to Numerical Analysis, 2nd ed; John Wiley & Sons: New York, NY, USA, 1989. [Google Scholar]
- King, A.K.; Howard, B.J. Research articleFull text access A High-Resolution Microwave Study of the Conformations of Butan-2-ol in a Supersonic Expansion. J. Mol. Spectrosc. 2001, 205, 38–42. [Google Scholar] [CrossRef]
- King, A.K.; Howard, B.J. A High-Resolution Microwave Study of the Butan-2-ol Argon Complex. J. Mol. Spectrosc. 2002, 214, 97–102. [Google Scholar] [CrossRef]
- King, A.K.; Howard, B.J. An investigation into the relaxation of the conformers of butan-2-ol in a supersonic expansion. J. Mol. Spectrosc. 2009, 257, 25–212. [Google Scholar] [CrossRef]
Conformer | μ | μA | μB | μC | A | B | C | ΔE | |
---|---|---|---|---|---|---|---|---|---|
1-chloroethanol | A | 1.92 | −1.19 | 0.17 | 1.49 | 9.040 | 4.619 | 3.314 | 0 |
S | 2.33 | 1.91 | 1.22 | −0.53 | 8.854 | 4.642 | 3.329 | 2.23 (3.707 × 10−21) | |
2-chloroethanol | Aa | 2.03 | 1.81 | −0.93 | 0.00 | 29.468 | 2.476 | 2.352 | 7.33 (1.217 × 10−20) |
As | 1.82 | 0.96 | 0.79 | 1.32 | 28.938 | 2.443 | 2.333 | 7.31 (1.214 × 10−20) | |
Sa | 3.17 | 2.31 | 1.86 | 1.09 | 13.408 | 3.373 | 2.950 | 7.58 (1.700 × 10−20) | |
Ss+ | 1.80 | −0.01 | 1.77 | 0.38 | 12.743 | 3.551 | 3.014 | 0 | |
Ss− | 3.29 | 1.39 | 2.67 | 1.33 | 13.100 | 3.370 | 2.929 | 12.01(1.995 × 10−20) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caglioti, C.; Nakamura, M.; Che, D.-C.; Tsai, P.-Y.; Palazzetti, F. Conformer Selection by Electrostatic Hexapoles: A Theoretical Study on 1-Chloroethanol and 2-Chloroethanol. Symmetry 2022, 14, 317. https://doi.org/10.3390/sym14020317
Caglioti C, Nakamura M, Che D-C, Tsai P-Y, Palazzetti F. Conformer Selection by Electrostatic Hexapoles: A Theoretical Study on 1-Chloroethanol and 2-Chloroethanol. Symmetry. 2022; 14(2):317. https://doi.org/10.3390/sym14020317
Chicago/Turabian StyleCaglioti, Concetta, Masaaki Nakamura, Dock-Chil Che, Po-Yu Tsai, and Federico Palazzetti. 2022. "Conformer Selection by Electrostatic Hexapoles: A Theoretical Study on 1-Chloroethanol and 2-Chloroethanol" Symmetry 14, no. 2: 317. https://doi.org/10.3390/sym14020317
APA StyleCaglioti, C., Nakamura, M., Che, D. -C., Tsai, P. -Y., & Palazzetti, F. (2022). Conformer Selection by Electrostatic Hexapoles: A Theoretical Study on 1-Chloroethanol and 2-Chloroethanol. Symmetry, 14(2), 317. https://doi.org/10.3390/sym14020317