Hybrid Precoding-Based Millimeter Wave Massive MIMO-NOMA Systems
Abstract
:1. Introduction
- Due to the larger number of users than RF chains in the mmWave mMIMO-NOMA system, it results in strong inter-beam interference and intra-beam interference. We propose a user grouping scheme by selecting the initial cluster head and iteratively grouping the users to suppress the intra-beam interference.
- For the inter-user interference in the mmWave mMIMO-NOMA system, we propose a hybrid precoder scheme based on the user channel alignment and a zero-forcing algorithm to solve the interference problem and further improve the SINR of users.
- For the power allocation in the mmWave mMIMO-NOMA systems, we transform the original nonconvex spectral efficiency maximization problem into a convex inter-cluster power allocation problem, so that the closed-form solution of the power allocation problem can be obtained quickly and efficiently according to the KKT(Karush-Kuhn-Tucker) condition.
2. System Model
3. Performance Optimization
3.1. User Grouping and Problem Formulation
3.1.1. User Grouping
Algorithm 1: User clustering algorithm. |
Inputs: number of users K, number of beams G, channel vector , adaptive threshold , Initialization: Output: the set of users after clustering 1: Channel gain of the user , where 2: User channel normalization 3: 4: 5: 6: 7: g = 2 8: while g <= G do 9: 10: 11: 12: 13: 14: end while 15: 16: t = 1 17: while do 18: Set 19: for do 20: 21: 22: end for 23: 24: Update 25: end while |
3.1.2. Problem Formulation
3.2. Hybrid Precoder Solution
Algorithm 2 Two-Stage Hybrid Precoder. |
Inputs: Number of antennas , Number of users K, number of RF chains , channel matrix , the optimized user grouping Initialization: , , number of quantization bits B. Output: First stage: Single-user analog precoding design 1: 2: for g = 1 to do 3: 4: 5: for n = 1 to do 6: 7: 8: end for 9: by calculating (12) 10: end for Second Stage: multiuser digital precoding design 1: 2: 3: 4: according to (13), we get the normalized 5: 6: for g = 1 to do 7: 8: for n = 2 to do 9: 10: end for 11: end for |
3.2.1. Analog Precoding
3.2.2. Digital Precoding
3.3. Power Allocation Solution
Algorithm 3: Bisection search method. |
1: Initialize the tolerance , the lower bound , the upper bound and the maximum number of iterations L 2: for l = 1:L do 3: Set 4: if then 5: Set 6: else 7: Set 8: end if 9: if then 10: break 11: end if 12: end for |
4. Simulation Results
4.1. Comparison and Analysis of Spectral Efficiency Performance
4.2. Computational Complexity
5. Conclusions and Future Work
5.1. Conclusions
5.2. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Solaiman, S.; Nassef, L.; Fadel, E. User Clustering and Optimized Power Allocation for D2D Communications at mmWave Underlaying MIMO-NOMA Cellular Networks. IEEE Access 2021, 9, 57726–57742. [Google Scholar] [CrossRef]
- Hu, X.; Zhong, C.; Chen, X.; Xu, W.; Zhang, Z. Cluster Grouping and Power Control For Angle-Domain MmWave MIMO NOMA Systems. IEEE J. Sel. Top. Signal Process. 2019, 13, 1167–1180. [Google Scholar] [CrossRef]
- Shahjalal, M.; Hasan, M.K.; Islam, M.M.; Chowdhury, M.Z.; Jang, Y.M. A Two-Stage Power Allocation-Based NOMA Architecture for Optical Camera Communication. IEEE Syst. J. 2021, 15, 4421–4430. [Google Scholar] [CrossRef]
- Uwaechia, A.N.; Mahyuddin, N.M. A Comprehensive Survey on Millimeter Wave Communications for Fifth-Generation Wireless Networks: Feasibility and Challenges. IEEE Access 2020, 8, 62367–62414. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, W.; Wang, J.; Chen, Y.; Lin, Y.; Ding, Z.; Beaulieu, N.C. Joint Beamforming and Jamming Optimization for Secure Transmission in MISO-NOMA Networks. IEEE Trans. Commun. 2019, 67, 2294–2305. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O.; Xia, X.-G. Joint Tx-Rx Beamforming and Power Allocation for 5G Millimeter-Wave Non-Orthogonal Multiple Access Networks. IEEE Trans. Commun. 2019, 67, 5114–5125. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Dai, L.; Wang, Z.; Ge, N.; Zhou, S. Spectrum and Energy-Efficient Beamspace MIMO-NOMA for Millimeter-Wave Communications Using Lens Antenna Array. IEEE J. Sel. Areas Commun. 2017, 35, 2370–2382. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O.; Xia, X.-G. Millimeter-Wave NOMA With User Grouping, Power Allocation and Hybrid Beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5065–5079. [Google Scholar] [CrossRef] [Green Version]
- Xiong, C.; Hua, Z.; Lv, K.; Li, X. An Improved K-means Text Clustering Algorithm by Optimizing Initial Cluster Centers. In Proceedings of the 2016 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China, 16–18 November 2016. [Google Scholar]
- Dai, L.; Wang, B.; Peng, M.; Chen, S. Hybrid Precoding-Based Millimeter-Wave Massive MIMO-NOMA With Simultaneous Wireless Information and Power Transfer. IEEE J. Sel. Areas Commun. 2019, 37, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Zeng, M.; Chu, Z.; Yang, S. Energy-Efficient Power Allocation in Millimeter Wave Massive MIMO With Non-Orthogonal Multiple Access. IEEE Wirel. Commun. Lett. 2017, 6, 782–785. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Li, Q.; Liu, Z.; Chen, H.; Vincent Poor, H. Enhanced User Grouping and Power Allocation for Hybrid mmWave MIMO-NOMA systems. IEEE Trans. Wirel. Commun. 2021, 1. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, J.; Huang, Y.; He, S.; You, X.; Yang, L. On Optimal Power Allocation for Downlink Non-Orthogonal Multiple Access Systems. IEEE J. Sel. Areas Commun. 2017, 35, 2744–2757. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, S.; Jorswieck, E.A.; Joda, R.; Yanikomeroglu, H. Optimal Power Allocation in Downlink Multicarrier NOMA Systems: Theory and Fast Algorithms. IEEE J. Sel. Areas Commun. 2022, 1. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhu, L.; Choi, J.; Xia, P.; Xia, X.-G. Joint Power Allocation and Beamforming for Non-Orthogonal Multiple Access (NOMA) in 5G Millimeter Wave Communications. IEEE Trans. Wirel. Commun. 2018, 17, 2961–2974. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Xu, W.; Shen, H.; Dong, X.; Zhao, C. Hybrid Precoding Architecture for Massive Multiuser MIMO With Dissipation: Sub-Connected or Fully Connected Structures? IEEE Trans. Wirel. Commun. 2018, 17, 5465–5479. [Google Scholar] [CrossRef] [Green Version]
- Heath, R.W.; Gonzalez-Prelcic, N.; Rangan, S.; Roh, W.; Sayeed, A.M. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems. IEEE J. Sel. Top. Signal Process. 2016, 10, 436–453. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Wang, C.-H.; Huang, Y.-H. A Hybrid RF/Baseband Precoding Processor Based on Parallel-Index-Selection Matrix-Inversion-Bypass Simultaneous Orthogonal Matching Pursuit for Millimeter Wave MIMO Systems. IEEE Trans. Signal Process. 2015, 63, 305–317. [Google Scholar] [CrossRef]
- Ayach, O.E.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W. Spatially Sparse Precoding in Millimeter Wave MIMO Systems. IEEE Trans. Wirel. Commun. 2014, 13, 1499–1513. [Google Scholar] [CrossRef] [Green Version]
- Rezvani, S.; Jorswieck, E.A.; Mokari, N.; Javan, M.R. Optimal SIC Ordering and Power Allocation in Downlink Multi-Cell NOMA Systems. IEEE Trans. Wirel. Commun. 2021, 1. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Number of antennas | 64 |
Number of RF chains | 4 |
The resolution of phase shifter | 4 |
Number of clusters | 4 |
Number of propagation paths per user | 3 |
Antenna array deployed | ULA |
Azimuth Angle-of-Departure(AOD) distribution | |
Total transmitted power | 30 mW |
The interval of SNR | [−20, 10] |
The interval of the number of users | [6, 20] |
The interval of the number of RF chains | [4, 8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Deng, H.; Xu, F.; Zhang, W.; Liu, G.; Zhang, Y. Hybrid Precoding-Based Millimeter Wave Massive MIMO-NOMA Systems. Symmetry 2022, 14, 412. https://doi.org/10.3390/sym14020412
Zhu Z, Deng H, Xu F, Zhang W, Liu G, Zhang Y. Hybrid Precoding-Based Millimeter Wave Massive MIMO-NOMA Systems. Symmetry. 2022; 14(2):412. https://doi.org/10.3390/sym14020412
Chicago/Turabian StyleZhu, Zaoxing, Honggui Deng, Fuxin Xu, Wenjuan Zhang, Gang Liu, and Yinhao Zhang. 2022. "Hybrid Precoding-Based Millimeter Wave Massive MIMO-NOMA Systems" Symmetry 14, no. 2: 412. https://doi.org/10.3390/sym14020412
APA StyleZhu, Z., Deng, H., Xu, F., Zhang, W., Liu, G., & Zhang, Y. (2022). Hybrid Precoding-Based Millimeter Wave Massive MIMO-NOMA Systems. Symmetry, 14(2), 412. https://doi.org/10.3390/sym14020412