Investigation of the Drag-Reduction Phenomenon on Plasma-Modified Surface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Surface Modification
2.2. Analytical Methods
2.2.1. Contact Angle
2.2.2. X-ray Photoelectron Spectroscopy (XPS)
2.2.3. Atomic Force Microscopy (AFM)
2.2.4. Field-Emission Scanning Electron Microscope (FEG-SEM)
2.2.5. Investigation of the Drag-Reduction Phenomenon
3. Results
3.1. Analysis of the Surface by XPS
3.2. AFM Analysis
3.3. Analysis of the Wettability
Drag Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Wu, K.; Kim, T.H.; Kim, H.D. Theoretical and Numerical Analyses of Aerodynamic Characteristics on Shock Vector Control. J. Aerosp. Eng. 2020, 33, 04020050. [Google Scholar] [CrossRef]
- Jiang, F.; Sun, H.; Chen, L.; Lei, F.; Sun, D. Dispersion-tribological property relationship in mineral oils containing 2D layered α-zirconium phosphate nanoplatelets. Friction 2020, 8, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Fotopoulos, A.G.; Margaris, D.P. Computational Analysis of Air Lubrication System for Commercial Shipping and Impacts on Fuel Consumption. Computation 2020, 8, 38. [Google Scholar] [CrossRef]
- Selim, M.S.; El-Safty, S.A.; Shenashen, M.A.; Higazy, S.A.; Elmarakbi, A. Progress in biomimetic leverages for marine antifouling using nanocomposite coatings. J. Mater. Chem. B 2020, 8, 3701–3732. [Google Scholar] [CrossRef]
- Sanders, W.C.; Winkel, E.S.; Dowling, D.R.; Perlin, M.; Ceccio, S.L. Bubble friction drag reduction in a high-Reynolds-number flat-plate turbulent boundary layer. J. Fluid Mech. 2006, 552, 353–380. [Google Scholar] [CrossRef]
- Kim, J.; Kim, C.-J. Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, Las Vegas, NV, USA, 24 January 2002; pp. 479–482. [Google Scholar]
- Virk, P.S. Drag reduction fundamentals. AIChE J. 1975, 21, 625–656. [Google Scholar] [CrossRef]
- Pribush, A.; Hatzkelzon, L.; Meyerstein, D.; Meyerstein, N. The mechanism of the polymer-induced drag reduction in blood. Colloids Surfaces B Biointerfaces 2013, 103, 354–359. [Google Scholar] [CrossRef]
- Lucas, E.F.; Mansur, C.R.E.; Spinelli, L.; Queirós, Y.G.C. Polymer science applied to petroleum production. Pure Appl. Chem. 2009, 81, 473–494. [Google Scholar] [CrossRef]
- Strel′Nikova, S.A.; Tkachenko, G.V.; Uryukov, B.A. Hydrodynamic Aspects of the Toms Effect. J. Eng. Phys. Thermophys. 2015, 88, 1491–1499. [Google Scholar] [CrossRef]
- Marhefka, J.N.; Kameneva, M.V. Natural Drag-Reducing Polymers: Discovery, Characterization and Potential Clinical Applications. Fluids 2016, 1, 6. [Google Scholar] [CrossRef] [Green Version]
- Bessa, K.; Belletati, J.; Dos Santos, L.; Rossoni, L.; Ortiz, J. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats. Braz. J. Med Biol. Res. 2011, 44, 767–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farsiani, Y.; Saeed, Z.; Jayaraman, B.; Elbing, B.R. Modification of turbulent boundary layer coherent structures with drag reducing polymer solution. Phys. Fluids 2020, 32, 015107. [Google Scholar] [CrossRef]
- Elbing, B.R.; Winkel, E.S.; Lay, K.A.; Ceccio, S.L.; Dowling, D.R.; Perlin, M. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid Mech. 2008, 612, 201–236. [Google Scholar] [CrossRef]
- Benschop, H.O.G.; Guerin, A.J.; Brinkmann, A.; Dale, M.L.; Finnie, A.A.; Breugem, W.-P.; Clare, A.S.; Stübing, D.; Price, C.; Reynolds, K.J. Drag-reducing riblets with fouling-release properties: Development and testing. Biofouling 2018, 34, 532–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, T.; Han, Y.; Guo, Z.; Wang, R.; Zheng, S.; Li, S.; Li, C.; Dai, X. Fabrication of Inherent Anticorrosion Superhydrophobic Surfaces on Metals. ACS Sustain. Chem. Eng. 2018, 6, 5598–5606. [Google Scholar] [CrossRef]
- Jokinen, V.; Kankuri, E.; Hoshian, S.; Franssila, S.; Ras, R.H.A. Superhydrophobic Blood-Repellent Surfaces. Adv. Mater. 2018, 30, e1705104. [Google Scholar] [CrossRef] [Green Version]
- Ge, M.; Cao, C.; Liang, F.; Liu, R.; Zhang, Y.; Zhang, W.; Zhu, T.; Yi, B.; Tang, Y.; Lai, Y. A “PDMS-in-water” emulsion enables mechanochemically robust superhydrophobic surfaces with self-healing nature. Nanoscale Horiz. 2019, 5, 65–73. [Google Scholar] [CrossRef]
- Tang, L.; Zeng, Z.; Wang, G.; Liu, E.; Li, L.; Xue, Q. Investigation on superhydrophilic surface with porous structure: Drag reduction or drag increasing. Surf. Coatings Technol. 2017, 317, 54–63. [Google Scholar] [CrossRef]
- Aljallis, E.; Sarshar, M.A.; Datla, R.; Sikka, V.; Jones, A.; Choi, C.-H. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow. Phys. Fluids 2013, 25, 025103. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, W.; Su, B.-L. Superhydrophobic surfaces: From natural to biomimetic to functional. J. Colloid Interface Sci. 2011, 353, 335–355. [Google Scholar] [CrossRef]
- Daniello, R.J.; Waterhouse, N.E.; Rothstein, J.P. Drag reduction in turbulent flows over superhydrophobic surfaces. Phys. Fluids 2009, 21, 085103. [Google Scholar] [CrossRef] [Green Version]
- Hubert, J.; Mertens, J.; Dufour, T.; Vandencasteele, N.; Reniers, F.; Viville, P.; Lazzaroni, R.; Raes, M.; Terryn, H. Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma. J. Mater. Res. 2015, 30, 3177–3191. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Coyle, T.W.; Pershin, L.; Mostaghimi, J. Understanding the correlations between the mechanical robustness, coating structures and surface composition for highly-/super-hydrophobic ceramic coatings. Surf. Coatings Technol. 2019, 378, 124929. [Google Scholar] [CrossRef]
- Huang, Q.; Xiong, L.; Deng, X.; Shu, Z.; Chen, Q.; Bao, B.; Chen, M.; Xiong, Q. Super-hydrophobic film deposition by an atmospheric-pressure plasma process and its anti-icing characteristics. Plasma Sci. Technol. 2019, 21, 055502. [Google Scholar] [CrossRef]
- Han, D.; Moon, S.Y. Rapid Formation of Transparent Superhydrophobic Film on Glasses by He/CH4/C4F8Plasma Deposition at Atmospheric Pressure. Plasma Process. Polym. 2015, 12, 172–179. [Google Scholar] [CrossRef]
- Sohbatzadeh, F.; Eshghabadi, M.; Mohsenpour, T. Controllable synthesizing DLC nano structures as a super hydrophobic layer on cotton fabric using a low-cost ethanol electrospray-assisted atmospheric plasma jet. Nanotechnology 2018, 29, 265603. [Google Scholar] [CrossRef] [PubMed]
- Hünnekens, B.; Krause, A.; Militz, H.; Viöl, W. Hydrophobic recovery of atmospheric pressure plasma treated surfaces of Wood-Polymer Composites (WPC). Eur. J. Wood Wood Prod. 2017, 75, 761–766. [Google Scholar] [CrossRef]
- Macedo, M.J.; Silva, G.S.; Feitor, M.C.; Costa, T.H.; Ito, E.N.; Melo, J.D. Surface modification of kapok fibers by cold plasma surface treatment. J. Mater. Res. Technol. 2020, 9, 2467–2476. [Google Scholar] [CrossRef]
- Lin, C.-W.; Chung, C.-J.; Chou, C.-M.; He, J.-L. Morphological effect governed by sandblasting and anodic surface reforming on the super-hydrophobicity of AISI 304 stainless steel. Thin Solid Films 2016, 620, 88–93. [Google Scholar] [CrossRef]
- Xu, L.; Lai, Y.; Liu, L.; Yang, L.; Guo, Y.; Chang, X.; Shi, J.; Zhang, R.; Yu, J. The Effect of Plasma Electron Temperature on the Surface Properties of Super-Hydrophobic Cotton Fabrics. Coatings 2020, 10, 160. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Deng, J.; Guo, Y.; Wang, W.; Zhang, R.; Yu, J. Fabrication of super-hydrophobic cotton fabric by low-pressure plasma-enhanced chemical vapor deposition. Text. Res. J. 2019, 89, 1853–1862. [Google Scholar] [CrossRef]
- Li, Z.; Liu, H.; Xu, X.; Ma, L.; Shang, S.; Song, Z. Surface modification of silicone elastomer with rosin acid-based quaternary ammonium salt for antimicrobial and biocompatible properties. Mater. Des. 2020, 189, 108493. [Google Scholar] [CrossRef]
- Fujii, T. PDMS-based microfluidic devices for biomedical applications. Microelectron. Eng. 2002, 61–62, 907–914. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Li, S.; Yuan, X. Antimicrobial strategies for urinary catheters. J. Biomed. Mater. Res. Part A 2019, 107, 445–467. [Google Scholar] [CrossRef]
- Soares, E.J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows. J. Non-Newtonian Fluid Mech. 2020, 276, 104225. [Google Scholar] [CrossRef]
- Shokry, F.; Elfattah, M.A.; El-Gayar, D.; Farag, H.; Sedahmed, G. Effect of drag reducing polymers and impeller geometry on the rate of mass and heat transfer at the wall of a cylindrical stirred tank reactor in relation to catalytic reactor design. Alex. Eng. J. 2020, 59, 509–518. [Google Scholar] [CrossRef]
- Hussein, M.; Adesina, A.Y.; Kumar, A.M.; Sorour, A.; Ankah, N.; Al-Aqeeli, N. Mechanical, in-vitro corrosion, and tribological characteristics of TiN coating produced by cathodic arc physical vapor deposition on Ti20Nb13Zr alloy for biomedical applications. Thin Solid Films 2020, 709, 138183. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, R.; Zhang, L.; Zhang, Y.; Wang, Y. Preparation and drag reduction performance of biomimetic coatings derived from gelatin-3,4-dihydroxyhydrocinnamic acid gels. Prog. Org. Coatings 2020, 139, 105442. [Google Scholar] [CrossRef]
- Macedo, M.J.P.; Mattos, A.; Costa, T.; Feitor, M.C.; Ito, E.N.; Melo, J.D.D. Effect of cold plasma treatment on recycled polyethylene/kapok composites interface adhesion. Compos. Interfaces 2018, 26, 871–886. [Google Scholar] [CrossRef]
- Neto, J.F.D.M.; De Souza, I.A.; Feitor, M.C.; Targino, T.G.; Diniz, G.F.; Libório, M.S.; Sousa, R.R.M.; Costa, T.H.D.C. Study of High-Density Polyethylene (HDPE) Kinetics Modification Treated by Dielectric Barrier Discharge (DBD) Plasma. Polymers 2020, 12, 2422. [Google Scholar] [CrossRef]
- Fernades, F.; Filho, E.R.; de Souza, I.A.; Nascimento, I.; Sousa, R.; Almeida, E.; Feitor, M.; Costa, T.; Naeem, M.; Iqbal, J. Novel synthesis of copper oxide on fabric samples by cathodic cage plasma deposition. Polym. Adv. Technol. 2019, 31, 520–526. [Google Scholar] [CrossRef]
- Chai, J.; Lu, F.; Li, B.; Kwok, D.Y. Wettability Interpretation of Oxygen Plasma Modified Poly(methyl methacrylate). Langmuir 2004, 20, 10919–10927. [Google Scholar] [CrossRef] [PubMed]
- Kozbial, A.; Trouba, C.; Liu, H.; Li, L. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles. Langmuir 2017, 33, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Beake, B.D.; Ling, J.S.G.; Leggett, G.J. Correlation of friction, adhesion, wettability and surface chemistry after argon plasma treatment of poly(ethylene terephthalate). J. Mater. Chem. 1998, 8, 2845–2854. [Google Scholar] [CrossRef]
- Drnovská, H.; Lapcik, L.; Bursikova, V.; Zemek, J.; Timmons, A.B. Surface properties of polyethylene after low-temperature plasma treatment. Colloid Polym. Sci. 2003, 281, 1025–1033. [Google Scholar] [CrossRef]
- Lee, L.-H. Correlation between Lewis Acid−Base Surface Interaction Components and Linear Solvation Energy Relationship Solvatochromic α and β Parameters. Langmuir 1996, 12, 1681–1687. [Google Scholar] [CrossRef]
- Marmur, A. Superhydrophobic and superhygrophobic surfaces: From understanding non-wettability to design considerations. Soft Matter 2013, 9, 7900–7904. [Google Scholar] [CrossRef]
- Fox, R.W.; McDonald, A.T.; Mitchell, J.W. Fox and McDonald’s Introduction to Fluid Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Qaiser, A.A.; Hyland, M.M.; Patterson, D. Effects of various polymerization techniques on PANI deposition at the surface of cellulose ester microporous membranes: XPS and electrical conductivity studies. Synth. Met. 2012, 162, 958–967. [Google Scholar] [CrossRef]
- Falde, E.J.; Yohe, S.T.; Colson, Y.L.; Grinstaff, M.W. Superhydrophobic materials for biomedical applications. Biomaterials 2016, 104, 87–103. [Google Scholar] [CrossRef] [Green Version]
Variant | Gases Used 20 cm3/min | Current | Voltage | |
---|---|---|---|---|
Ar | C2H2 | A | V | |
1st Ar/CHCl3 | 40% | 60% | 0.15 | 600 |
2nd C2H2/CHCl3 | 20% | 80% | 0.15 | 600 |
Samples | O (%) | C (%) | Cl (%) | Si (%) | O/C | Cl/C | Variant | Time (min) | Pressure (mBar) |
---|---|---|---|---|---|---|---|---|---|
AM1 | 24.83 | 48.47 | - | 26.69 | 0.5123 | - | - | - | |
AM2 | 17.88 | 56.64 | 7.72 | 17.76 | 0.3157 | 0.1363 | 1st | 10 | 1 ± 0.02 |
AM3 | 19.68 | 53.11 | 5.96 | 21.24 | 0.3706 | 0.1122 | 1st | 15 | 1 ± 0.02 |
AM4 | 24.32 | 46.88 | 4.14 | 24.65 | 0.5188 | 0.0883 | 2nd | 10 | 1 ± 0.02 |
AM5 | 19.37 | 50.66 | 11.35 | 18.63 | 0.3824 | 0224 | 2nd | 15 | 1 ± 0.02 |
Sample | Roughness (nm) | Sample Condition |
---|---|---|
AM01 | 8.92 | untreated |
AM03 | 89.29 | treated 1st variant |
AM05 | 4.61 | treated 2nd variant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz, G.F.; Souza, I.A.d.; Neto, J.F.d.M.; Menezes, A.W.; Souza, J.A.d.; Ortiz, J.; Costa, T.H.d.C.; Bessa, K.L.d.; Feitor, M.C. Investigation of the Drag-Reduction Phenomenon on Plasma-Modified Surface. Symmetry 2022, 14, 524. https://doi.org/10.3390/sym14030524
Diniz GF, Souza IAd, Neto JFdM, Menezes AW, Souza JAd, Ortiz J, Costa THdC, Bessa KLd, Feitor MC. Investigation of the Drag-Reduction Phenomenon on Plasma-Modified Surface. Symmetry. 2022; 14(3):524. https://doi.org/10.3390/sym14030524
Chicago/Turabian StyleDiniz, Gutembergy Ferreira, Ivan Alves de Souza, João Freire de Medeiros Neto, Anderson Wagner Menezes, Jailson Alves de Souza, Jayme Ortiz, Thércio Henrique de Carvalho Costa, Kleiber Lima de Bessa, and Michelle Cequeira Feitor. 2022. "Investigation of the Drag-Reduction Phenomenon on Plasma-Modified Surface" Symmetry 14, no. 3: 524. https://doi.org/10.3390/sym14030524
APA StyleDiniz, G. F., Souza, I. A. d., Neto, J. F. d. M., Menezes, A. W., Souza, J. A. d., Ortiz, J., Costa, T. H. d. C., Bessa, K. L. d., & Feitor, M. C. (2022). Investigation of the Drag-Reduction Phenomenon on Plasma-Modified Surface. Symmetry, 14(3), 524. https://doi.org/10.3390/sym14030524