Parameter Estimation for a Type of Fractional Diffusion Equation Based on Compact Difference Scheme
Abstract
:1. Introduction
2. Mathematical Model of the Problem and the Compact Difference Scheme
2.1. Mathematical Model of the Problem
2.2. The Compact Difference Scheme for the Forward Problem
- (1)
- decreases monotonically as j increases, and ;
- (2)
- , .
3. Parameter Estimation for the Inverse Problem
- (1)
- Draw an initial value of ,
- (2)
- for i = 0:draw ,draw ,if , then ,else ,where
4. Simulation
4.1. Simulation for the Forward Problem
4.2. Simulation for the Inverse Problem
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bazhlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands, 2001. [Google Scholar]
- Kostic, M. Abstract Volterra Integro-Differential Equations; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Xie, C.; Xia, X.; Aghdam, Y.E.; Farnam, B.; Jafari, H.; Wang, S. The numerical strategy of tempered fractional derivative in European double barrier option. Fractals 2022, 30, 2240049. [Google Scholar] [CrossRef]
- Mesgarani, H.; Aghdam, Y.E.; Tavakoli, H. Numerical Simulation to Solve Two-Dimensional Temporal–Space Fractional Bloch–Torrey Equation Taken of the Spin Magnetic Moment Diffusion. Int. J. Appl. Comput. Math. 2021, 7, 94. [Google Scholar] [CrossRef]
- Bouchaud, J.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications. Phys. Rep. 1990, 195, 127–293. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Zhang, J. Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional schrödinger equations. SIAM J. Sci. Comput. 2017, 39, A3067–A3088. [Google Scholar] [CrossRef]
- Li, L.; Li, D. Exact solutions and numerical study of time fractional Burgers’ equations. Appl. Math. Lett. 2020, 100, 106011. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Li, D.; Zhang, C. Long time numerical behaviors of fractional pantograph equations. Math. Comput. Simul. 2020, 172, 244–257. [Google Scholar] [CrossRef]
- Berardi, M.; Difonzo, F.V. A quadrature-based scheme for numerical solutions to Kirchhoff transformed Richards’ equation. J. Comput. Dyn. 2022. [Google Scholar] [CrossRef]
- Liu, F.; Fukumoto, Y.; Zhao, X. A multi level linearized CrankCNicolson scheme for Richards equation under variable flux boundary conditions. Appl. Anal. 2021. [Google Scholar] [CrossRef]
- Garrappa, R. Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Math. Comput. Simul. 2015, 110, 96–112. [Google Scholar] [CrossRef] [Green Version]
- Alikhanov, A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438. [Google Scholar] [CrossRef] [Green Version]
- Langlands, T.; Henry, B. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205, 719–736. [Google Scholar] [CrossRef]
- Chen, X.; Di, Y.; Duan, J.; Li, D. Linearized compact ADI schemes for nonlinear time-fractional Schrodinger equations. Appl. Math. Lett. 2018, 84, 160–167. [Google Scholar] [CrossRef]
- Li, D.; Sun, W.; Wu, C. A novel numerical approach to time-fractional parabolic equations with nonsmooth solutions. Numer. Math. Theory Meth. Appl. 2021, 14, 355–376. [Google Scholar]
- Li, D.; Liao, H.; Sun, W.; Wang, J.; Zhang, J. Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 2018, 24, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Zhou, B.; Chen, X.; Li, D. Nonuniform Alikhanov linearized Galerkin finite element methods for nonlinear time-fractional parabolic equations. J. Sci. Comput. 2020, 85, 39. [Google Scholar] [CrossRef]
- Aghdam, Y.E.; Mesgarani, H.; Moremedi, G.M.; Khoshkhahtinat, M. High-accuracy numerical scheme for solving the space-time fractional advection-diffusion equation with convergence analysis. Alex. Eng. J. 2022, 61, 217–225. [Google Scholar] [CrossRef]
- Mesgarani, H.; Beiranvand, A.; Aghdam, Y.E. The impact of the Chebyshev collocation method on solutions of the time-fractional Black-Scholes. Math. Sci. 2021, 15, 137–143. [Google Scholar] [CrossRef]
- Janno, J.; Kinash, N. Reconstruction of an order of derivative and a source term in a diffusion equation from final measurements. Inverse Probl. 2018, 34, 025007. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Jia, X.; Yamamoto, M. Simultaneous inversion for the space-dependent diffusion coefficient and the order in the time-diffusion equation. Inverse Probl. 2013, 29, 65014. [Google Scholar] [CrossRef]
- Miller, L.; Yamamoto, M. Coefficient inverse problem for a diffusion equation. Inverse Probl. 2013, 29, 75013. [Google Scholar] [CrossRef]
- Hatano, Y.; Nakagawa, J.; Wang, S.; Yamamoto, M. Determination of order in fractional diffusion equation. J. Math-for-Ind. 2013, 5, 118. [Google Scholar]
- Jin, B.; Kian, Y. Recovery of the Order of Derivation for Fractional Diffusion Equations in an Unknown Medium. arXiv 2021, arXiv:2103.15166. [Google Scholar]
- Jin, B.; Kian, Y. Recovering multiple fractional orders in time-fractional diffusion in an unknown medium. Proc. R. Math. Phys. Eng. Sci. 2021, 477, 20210468. [Google Scholar] [CrossRef]
- Jin, B.; Zhou, Z. Recovering the potential and order in one-dimensional time-fractional diffusion with unknown initial condition and source. Inverse Probl. 2021, 37, 105009. [Google Scholar] [CrossRef]
- Janno, J. Determination of the order of fractional derivative and a kernel in an inverse problem for a generalized time fractional diffusion equation. Electron. J. Differ. Equ. 2016, 2016, 1–28. [Google Scholar]
- Yamamoto, M. Uniqueness in determining fractional orders of derivatives and initial values. Inverse Probl. 2021, 37, 095006. [Google Scholar] [CrossRef]
- El Hamidi, A.; Tfayli, A. Identification of the derivative order in fractional differential equations. Math. Methods Appl. Sci. 2021, 44, 8397–8413. [Google Scholar] [CrossRef]
- Krasnoschok, M.; Pereverzyev, S.; Siryk, S.V.; Vasylyeva, N. Regularized reconstruction of the order in semilinear subdiffusion with memory. In Springer Proceedings in Mathematics and Statistics; Springer: Singapore, 2020; Volume 310, pp. 205–236. [Google Scholar]
- Krasnoschok, M.; Pereverzyev, S.; Siryk, S.V.; Vasylyeva, N. Determination of the fractional order in semilinear subdiffusion equations. Fract. Calc. Appl. Anal. 2020, 23, 694–722. [Google Scholar] [CrossRef]
- Gao, F.; Lee, X.J.; Tong, H.Q.; Fei, F.X.; Zhao, H.L. Identification of Unknown Parameters and Orders via Cuckoo Search Oriented Statistically by Differential Evolution for Noncommensurate Fractional-Order Chaotic Systems. Abstr. Appl. Anal. 2013, 2013, 382834. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.G.; Yang, Q.G. Parameter identification and synchronization of fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 305–316. [Google Scholar] [CrossRef]
- Bohaienko, V.; Gladky, A. Parameters identification for fractional-fractal model of filtration-consolidation using GPU. In Proceedings of the CMIS 2021: 4th International Workshop on Computer Modeling and Intelligent Systems, Zaporizhzhia, Ukraine, 27 April 2021; pp. 409–418. [Google Scholar]
- Bohaienko, V.; Gladky, A.; Romashchenko, M.; Matiash, T. Identification of fractional water transport model with ψ-Caputo derivatives using particle swarm optimization algorithm. Appl. Math. Comput. 2021, 390, 125665. [Google Scholar] [CrossRef]
- Fadale, T.D.; Nenarokomov, A.V.; Emery, A.F. Uncertainties in parameter estimation: The inverse problem. Int. J. Heat Mass Transf. 1995, 38, 511–518. [Google Scholar] [CrossRef]
- Sun, N.Z.; Yeh, W.G. A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis. Water Resour. Res. 1992, 28, 3269–3280. [Google Scholar] [CrossRef]
- Kaipio, J.; Somersalo, E. Statistical and Computational Inverse Problems; Springer: New York, NY, USA, 2005. [Google Scholar]
- Fan, W.; Jiang, X.; Chen, S. Parameter estimation for the fractional fractal diffusion model based on its numerical solution. Comput. Math. Appl. 2016, 71, 642–651. [Google Scholar] [CrossRef]
- Sun, Z.; Wu, X. A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 2006, 56, 193–209. [Google Scholar] [CrossRef]
- Chen, S.; Liu, F.; Zhuang, P.; Anh, V. Finite difference approximations for the fractional Fokker-Planck equation. Appl. Math. Model. 2009, 33, 256–273. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z. The Numerical Methods for Partial Equations; Science Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Gu, W.; Zhou, Y.; Ge, X. Compact Difference Scheme for Solving Fractional Neutral Parabolic Differential Equation with Proportional Delay. J. Funct. Spaces 2017, 2017, 3679526. [Google Scholar] [CrossRef] [Green Version]
1/50 | * | * | * | |||
1/100 | 1.733 | 1.386 | 1.192 | |||
1/150 | 1.742 | 1.390 | 1.195 | |||
1/200 | 1.747 | 1.392 | 1.196 |
h | ||||||
---|---|---|---|---|---|---|
1/10 | * | * | * | |||
1/20 | 3.998 | 4.008 | 4.111 | |||
1/40 | 4.001 | 4.171 | 4.528 | |||
1/80 | 4.017 | 3.561 | −0.977 |
Time (s) | ||||
---|---|---|---|---|
0.2049 | 0.0227 | [0.1701, 0.2367] | 819.1719 | |
0.1954 | 0.0042 | [0.1884, 0.2014] | 865.3281 | |
0.1998 | 0.0003 | [0.1991, 0.2004] | 769.8125 |
n | Time (s) | |||
---|---|---|---|---|
25 | 0.2118 | 0.0145 | [0.1878, 0.2357] | 827.8750 |
50 | 0.1778 | 0.0120 | [0.1572, 0.1984] | 836.0469 |
100 | 0.1873 | 0.0082 | [0.1744, 0.2023] | 844.9219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W.; Wei, F.; Li, M. Parameter Estimation for a Type of Fractional Diffusion Equation Based on Compact Difference Scheme. Symmetry 2022, 14, 560. https://doi.org/10.3390/sym14030560
Gu W, Wei F, Li M. Parameter Estimation for a Type of Fractional Diffusion Equation Based on Compact Difference Scheme. Symmetry. 2022; 14(3):560. https://doi.org/10.3390/sym14030560
Chicago/Turabian StyleGu, Wei, Fang Wei, and Min Li. 2022. "Parameter Estimation for a Type of Fractional Diffusion Equation Based on Compact Difference Scheme" Symmetry 14, no. 3: 560. https://doi.org/10.3390/sym14030560
APA StyleGu, W., Wei, F., & Li, M. (2022). Parameter Estimation for a Type of Fractional Diffusion Equation Based on Compact Difference Scheme. Symmetry, 14(3), 560. https://doi.org/10.3390/sym14030560