Synthesis of Bis(N,N-diethyl)aniline-Based, Nonlinear, Optical Chromophores with Increased Electro-Optic Activity by Optimizing the Thiolated Isophorone Bridge
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Syntheses
2.2.1. Synthesis of (E)-2-(3-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-2-((2-((tert-butyldiphenylsilyl)oxy)ethyl)thio)-5,5-dimethylcyclohex-2-en-1-ylidene)acetaldehyde (Compound 9a)
2.2.2. Synthesis of 2-(((E)-2-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-4,4-dimethyl-6-(2-oxoethylidene)cyclohex-1-en-1-yl)thio)ethyl 3,5-bis(trifluoromethyl)benzoate (Compound 9b)
2.2.3. Synthesis of 2-(((E)-2-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-4,4-dimethyl-6-(2-oxoethylidene)cyclohex-1-en-1-yl)thio)ethyl (E)-2-cyano-3-(4-(dimethylamino)phenyl)acrylate (Compound 9c)
2.2.4. Synthesis of 2-(4-((1E,3E)-3-(3-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-2-(3-((tert-butyldimethylsilyl)oxy)propyl)-5,5-dimethylcyclohex-2-en-1-ylidene)prop-1-en-1-yl)-3-cyano-5,5-dimethylfuran-2(5H)-ylidene)malononitrile (Chromophore Z3)
2.2.5. Synthesis of 2-(4-((1E,3E)-3-(3-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-2-((2-((tert-butyldiphenylsilyl)oxy)ethyl)thio)-5,5-dimethylcyclohex-2-en-1-ylidene)prop-1-en-1-yl)-3-cyano-5,5-dimethylfuran-2(5H)-ylidene)malononitrile (Chromophore Z4)
2.2.6. Synthesis of 2-(((E)-2-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-6-((E)-3-(4-cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-dihydrofuran-3-yl)allylidene)-4,4-dimethylcyclohex-1-en-1-yl)thio)ethyl 3,5-bis(trifluoromethyl)benzoate (Chromophore Z5)
2.2.7. Synthesis of 2-(((E)-2-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-6-((E)-3-(4-cyano-5-(dicyanomethylene)-2,2-dimethyl-2,5-dihydrofuran-3-yl)allylidene)-4,4-dimethylcyclohex-1-en-1-yl)thio)ethyl(E)-2-cyano-3-(4-(dimethylamino)phenyl)acrylate (Chromophore Z6)
2.2.8. Synthesis of (E)-3-(4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-5,5-dimethylcyclohex-2-en-1-one (Compound 4a)
2.2.9. Synthesis of (E)-2-(3-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-5,5-dimethylcyclohex-2-en-1-ylidene)acetonitrile (Compound 5a)
2.2.10. Synthesis of (E)-2-(3-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-5,5-dimethylcyclohex-2-en-1-ylidene)acetaldehyde (Compound 6a)
2.2.11. Synthesis of 2-(4-((1E,3E)-3-(3-((E)-4,4-bis(4-(diethylamino)phenyl)buta-1,3-dien-1-yl)-5,5-dimethylcyclohex-2-en-1-ylidene)prop-1-en-1-yl)-3-cyano-5,5-dimethylfuran-2(5H)-ylidene)malononitrile (Chromophore Z1)
3. Results and Discussion
3.1. Synthesis and Characterization of Chromophores
3.2. Thermal Stability
3.3. Optical Properties
3.4. Theoretical Calculations
3.5. Electro-Optic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burla, M.; Hoessbacher, C.; Heni, W.; Haffner, C.; Fedoryshyn, Y.; Werner, D.; Watanabe, T.; Massler, H.; Elder, D.L.; Dalton, L.R.; et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. Apl. Photonics. 2019, 4, 056106. [Google Scholar] [CrossRef] [Green Version]
- Dalton, L.R.; Sullivan, P.A.; Bale, D.H. Electric Field Poled Organic Electro-optic Materials: State of the Art and Future Prospects. Chem. Rev. 2010, 110, 25–55. [Google Scholar] [CrossRef] [PubMed]
- Haffner, C.; Joerg, A.; Doderer, M.; Mayor, F.; Chelladurai, D.; Fedoryshyn, Y.; Roman, C.I.; Mazur, M.; Burla, M.; Lezec, H.J.; et al. Nano-opto-electro-mechanical switches operated at CMOS-level voltages. Science 2019, 366, 860. [Google Scholar] [CrossRef] [PubMed]
- Koch, U.; Uhl, C.; Hettrich, H.; Fedoryshyn, Y.; Hoessbacher, C.; Heni, W.; Baeuerle, B.; Bitachon, B.I.; Josten, A.; Ayata, M.; et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat. Electron. 2020, 3, 338. [Google Scholar] [CrossRef]
- Salamin, Y.; Benea-Chelmus, I.-C.; Fedoryshyn, Y.; Heni, W.; Elder, D.L.; Dalton, L.R.; Faist, J.; Leuthold, J. Compact and ultra-efficient broadband plasmonic terahertz field detector. Nat. Commun. 2019, 10, 5550. [Google Scholar] [CrossRef]
- Baeuerle, B.; Heni, W.; Hoessbacher, C.; Fedoryshyn, Y.; Koch, U.; Josten, A.; Watanabe, T.; Uhl, C.; Hettrich, H.; Elder, D.L.; et al. 120 GBd plasmonic Mach-Zehnder modulator with a novel differential electrode design operated at a peak-to-peak drive voltage of 178 mV. Opt. Express 2019, 27, 16823–16832. [Google Scholar] [CrossRef]
- Lee, J.-A.; Kim, W.T.; Jazbinsek, M.; Kim, D.; Lee, S.-H.; Yu, I.C.; Yoon, W.; Yun, H.; Rotermund, F.; Kwon, O.P. X-Shaped Alignment of Chromophores: Potential Alternative for Efficient Organic Terahertz Generators. Adv. Opt. Mater. 2020, 8, 1901921. [Google Scholar] [CrossRef]
- Jin, M.; Zhu, Z.-C.; Liao, Q.-Y.; Li, Q.-Q.; Li, Z. Dendronized Polymers with High FTC-chromophore Loading Density: Large Second-order Nonlinear Optical Effects, Good Temporal and Thermal Stability. Chin. J. Polym. Sci. 2020, 38, 118–125. [Google Scholar] [CrossRef]
- Liu, F.; Yang, Y.; Wang, H.; Liu, J.; Hu, C.; Huo, F.; Bo, S.; Zhen, Z.; Liu, X.; Qiu, L. Comparative studies on structure-nonlinearity relationships in a series of novel second-order nonlinear optical chromophores with different aromatic amine donors. Dyes Pigments 2015, 120, 347–356. [Google Scholar] [CrossRef]
- Jin, W.; Johnston, P.V.; Elder, D.L.; Manner, K.T.; Garrett, K.E.; Kaminsky, W.; Xu, R.; Robinson, B.H.; Dalton, L.R. Structure-function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores. J. Mater. Chem. C 2016, 4, 3119–3124. [Google Scholar] [CrossRef]
- Johnson, L.E.; Dalton, L.R.; Robinson, B.H. Optimizing Calculations of Electronic Excitations and Relative Hyperpolarizabilities of Electrooptic Chromophores. Acc. Chem. Res. 2014, 47, 3258–3265. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Peng, M.; Li, Z.; Wang, Z.; Liu, F.; Liu, W.; Liao, J.; Luo, T.; Wang, J. Design and synthesis of Phenylaminothiophene donor-based chromophore with enhanced electro-optic activity. Dyes. Pigments. 2021, 192, 109423. [Google Scholar] [CrossRef]
- Liu, F.; Mo, S.; Zhai, Z.; Peng, M.; Wu, S.; Li, C.; Yu, C.; Liu, J. Synthesis of nonlinear optical chromophores with isophorone-derived bridges for enhanced thermal stability and electro-optic activity. J. Mater. Chem. C 2020, 8, 9226–9235. [Google Scholar] [CrossRef]
- Hammond, S.R.; Clot, O.; Firestone, K.A.; Bale, D.H.; Lao, D.; Haller, M.; Phelan, G.D.; Carlson, B.; Jen, A.K.Y.; Reid, P.J.; et al. Site-isolated electro-optic chromophores based on substituted 2,2 ′-bis(3,4-propylenedioxythiophene) pi-conjugated bridges. Chem. Mater. 2008, 20, 3425–3434. [Google Scholar] [CrossRef]
- Luo, J.; Huang, S.; Cheng, Y.-J.; Kim, T.-D.; Shi, Z.; Zhou, X.-H.; Jen, A.K.Y. Phenyltetraene-based nonlinear optical chromophores with enhanced chemical stability and electrooptic activity. Org. Lett. 2007, 9, 4471–4474. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Li, Z.a.; Wu, J.; Jiang, Z.; Luo, J.; Jen, A.K.Y. Design, synthesis, and properties of nonlinear optical chromophores based on a verbenone bridge with a novel dendritic acceptor. J. Mater. Chem. C 2018, 6, 2840–2847. [Google Scholar] [CrossRef]
- Jang, S.-H.; Luo, J.; Tucker, N.M.; Leclercq, A.; Zojer, E.; Haller, M.A.; Kim, T.-D.; Kang, J.-W.; Firestone, K.; Bale, D.; et al. Pyrroline chromophores for electro-optics. Chem. Mater. 2006, 18, 2982–2988. [Google Scholar] [CrossRef]
- He, M.Q.; Leslie, T.M.; Sinicropi, J.A. alpha-Hydroxy ketone precursors leading to a novel class of electro-optic acceptors. Chem. Mater. 2002, 14, 2393–2400. [Google Scholar] [CrossRef]
- Wu, J.; Li, Z.a.; Luo, J.; Jen, A.K.Y. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J. Mater. Chem. C 2020, 8, 15009–15026. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, H.; Han, M.; Cheng, Z.; Peng, Q.; Li, Q.; Li, Z. Janus molecules: Large second-order nonlinear optical performance, good temporal stability, excellent thermal stability and spherical structure with optimized dendrimer structure. Mater. Chem. Front. 2018, 2, 1374–1382. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z. Second-Order Nonlinear Optical Dendrimers and Dendronized Hyperbranched Polymers. Chem. Rec. 2017, 17, 71–89. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, J.; Liu, J.; Yu, C.; Zhai, Z.; Qina, G.; Liu, F. Self-assembled binary multichromophore dendrimers with enhanced electro-optic coefficients and alignment stability. Mater. Chem. Front. 2020, 4, 168–175. [Google Scholar] [CrossRef]
- Li, Z.-a.; Li, Z. Recent Advances in Second Order Nonlinear Optical Polymers with Dendritic Structure. Acta Polym. Sin. 2017, 2, 155–177. [Google Scholar] [CrossRef]
- Yang, H.; Tang, R.; Wu, W.; Liu, W.; Guo, Q.; Liu, Y.; Xu, S.; Cao, S.; Li, Z. A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: Convenient synthesis and large nonlinear optical effects. Polym. Chem. 2016, 7, 4016–4024. [Google Scholar] [CrossRef]
- Zang, X.; Liu, G.; Li, Q.; Li, Z.A.; Li, Z. A Correlation Study between Dendritic Structure and Macroscopic Nonlinearity for Second-Order Nonlinear Optical Materials. Macromolecules 2020, 53, 4012–4021. [Google Scholar] [CrossRef]
- Cheng, Y.-J.; Luo, J.; Huang, S.; Zhou, X.; Shi, Z.; Kim, T.-D.; Bale, D.H.; Takahashi, S.; Yick, A.; Polishak, B.M.; et al. Donor-acceptor thiolated polyenic chromophores exhibiting large optical nonlinearity and excellent photostability. Chem. Mater. 2008, 20, 5047–5054. [Google Scholar] [CrossRef]
- Liu, F.; Yu, C.; Qin, G.; Peng, M.; Wang, Z.; Li, Z.; Wu, S.; Li, C.; Zhang, M. Enhanced thermal stability and electro-optic activity from fluorene-based nonlinear optical chromophores. Dyes Pigments 2020, 183, 108751. [Google Scholar] [CrossRef]
- Zhang, D.; Zou, J.; Wang, W.; Yu, Q.; Deng, G.; Wu, J.; Li, Z.-A.; Luo, J. Systematic study of the structure-property relationship of a series of near-infrared absorbing push-pull heptamethine chromophores for electro-optics. Sci. China-Chem. 2021, 64, 263–273. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, H.; Liu, F.; Yang, D.; Bo, S.; Qiu, L.; Zhen, Z.; Liu, X. The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Phys. Chem. Chem. Phys. 2015, 17, 5776–5784. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Xiao, H.; Liu, F.; Huo, F.; Chen, L.; Chen, Z.; Bo, S.; Qiu, L.; Zhen, Z. Enhancement of electro-optic properties of bis(N,N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. J. Mater. Chem. C 2017, 5, 6704–6712. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, H.; Wang, H.; Liu, F.; Bo, S.; Liu, J.; Qiu, L.; Zhen, Z.; Liu, X. Synthesis and optical nonlinear properties of novel Y-shaped chromophores with excellent electro-optic activity. J. Mater. Chem. C 2015, 3, 11423–11431. [Google Scholar] [CrossRef]
- Liu, F.; Zeng, Z.; Rahman, A.; Chen, X.; Liang, Z.; Huang, X.; Zhang, S.; Xu, H.; Wang, J. Design and synthesis of organic optical nonlinear multichromophore dendrimers based on double-donor structures. Mater. Chem. Front. 2021, 5, 8341–8351. [Google Scholar] [CrossRef]
- Wu, J.; Wang, W.; Chen, K.; Luo, J. The synthesis of second-order nonlinear optical chromophores with conjugated steric hindrance for electro-optics at 850 nm. J. Mater. Chem. C 2020, 8, 5494–5500. [Google Scholar] [CrossRef]
- Xu, H.; Yang, D.; Liu, F.; Fu, M.; Bo, S.; Liu, X.; Cao, Y. Nonlinear optical chromophores based on Dewar’s rules: Enhancement of electro-optic activity by introducing heteroatoms into the donor or bridge. Phys. Chem. Chem. Phys. 2015, 17, 29679–29688. [Google Scholar] [CrossRef]
- Zhang, C.; Dalton, L.R.; Oh, M.C.; Zhang, H.; Steier, W.H. Low V-pi electrooptic modulators from CLD-1: Chromophore design and synthesis, material processing, and characterization. Chem. Mater. 2001, 13, 3043–3050. [Google Scholar] [CrossRef]
- Zhang, X.; Aoki, I.; Piao, X.; Inoue, S.; Tazawa, H.; Yokoyama, S.; Otomo, A. Effect of modified donor units on molecular hyperpolarizability of thienyl-vinylene nonlinear optical chromophores. Tetrahedron Lett. 2010, 51, 5873–5876. [Google Scholar] [CrossRef]
- Liu, F.; Wang, H.; Yang, Y.; Xu, H.; Zhang, M.; Zhang, A.; Bo, S.; Zhen, Z.; Liu, X.; Qiu, L. Nonlinear optical chromophores containing a novel pyrrole-based bridge: Optimization of electro-optic activity and thermal stability by modifying the bridge. J. Mater. Chem. C 2014, 2, 7785–7795. [Google Scholar] [CrossRef]
- Liu, F.; Chen, S.; Mo, S.; Qin, G.; Yu, C.; Zhang, W.; Shi, W.-J.; Chen, P.; Xu, H.; Fu, M. Synthesis of novel nonlinear optical chromophores with enhanced electro-optic activity by introducing suitable isolation groups into the donor and bridge. J. Mater. Chem. C 2019, 7, 8019–8028. [Google Scholar] [CrossRef]
- He, M.Q.; Leslie, T.M.; Sinicropi, J.A.; Garner, S.M.; Reed, L.D. Synthesis of chromophores with extremely high electro-optic activities. 2. Isophorone- and combined isophorone-thiophene-based chromophores. Chem. Mater. 2002, 14, 4669–4675. [Google Scholar] [CrossRef]
- He, M.Q.; Leslie, T.M.; Sinicropi, J.A. Synthesis of chromophores with extremely high electro-optic activity. 1. Thiophene-bridge-based chromophores. Chem. Mater. 2002, 14, 4662–4668. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, C.G.; Yang, J.L.; Dalton, L.R.; Sun, G.L.; Zhang, H.; Steier, W.H. Electric poling and relaxation of thermoset polyurethane second-order nonlinear optical materials: Role of cross-linking and monomer rigidity. Macromolecules 2001, 34, 235–243. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, H.; Xiao, H.; Xu, H.; Bo, S.; Qiu, L.; Zhen, Z.; Lai, L.; Chen, S.; Wang, J. Structure-function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dyes and Pigments 2018, 157, 55–63. [Google Scholar] [CrossRef]
- Zych, D.; Slodek, A. Sensitizers for DSSC containing triazole motif with acceptor/donor substituents - Correlation between theoretical and experimental data in prediction of consistent photophysical parameters. J. Mol. Struct. 2020, 1207, 127771. [Google Scholar] [CrossRef]
- Zych, D.; Slodek, A.; Frankowska, A. Is it worthwhile to deal with 1,3-disubstituted pyrene derivatives? - Photophysical, optical and theoretical study of substitution position effect of pyrenes containing tetrazole groups. Comput. Mater. Sci. 2019, 165, 101–113. [Google Scholar] [CrossRef]
- Park, D.H.; Lee, C.H.; Herman, W.N. Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures. Opt. Express 2006, 14, 8866–8884. [Google Scholar] [CrossRef]
Cmpd | Td (°C) | λmax a | λmax b | Δλ c | λmax d |
---|---|---|---|---|---|
Z1 | 241 | 760 | 667 | 93 | 740 |
Z2 | 267 | 770 | 696 | 75 | 725 |
Z3 | 191 | 770 | 696 | 75 | 715 |
Z4 | 241 | 771 | 702 | 69 | 734 |
Z5 | 247 | 775 | 702 | 73 | 724 |
Z6 | 204 | 748 | 684 | 64 | 671 |
Cmpd | △E(DFT) a (eV) | βtot b (10−30esu) | µ c (D) | λmax d (nm) |
---|---|---|---|---|
Z1 | 1.814 | 1467.3 | 28.90 | 760 |
Z2 | 1.826 | 1552.3 | 27.97 | 770 |
Z3 | 1.795 | 1566.0 | 27.43 | 770 |
Z4 | 1.799 | 1534.3 | 27.01 | 771 |
Z5 | 1.829 | 1515.8 | 29.74 | 775 |
Z6 | 1.841 | 1489.4 | 26.77 | 748 |
Ae | 2.080 | 1090.6 | 20.63 | 677 |
Be | 2.065 | 1110.2 | 20.40 | 682 |
Cmpd | ρN a/ [x 1020 molecules/cm3] | r33/Ep (nm2/V2) b | r33/(EpρN) c | max.r33 (pm/V) |
---|---|---|---|---|
Z1 | 2.22 | 1.09 ± 0.06 | 4.91 ± 0.27 | 101 |
Z2 | 2.00 | 0.82 ± 0.05 | 4.10 ± 0.25 | 80 |
Z3 | 1.77 | 1.33 ± 0.07 | 7.51 ± 0.40 | 139 |
Z4 | 1.52 | 1.62 ± 0.07 | 10.65 ± 0.46 | 169 |
Z5 | 1.51 | 1.60 ± 0.07 | 10.59 ± 0.46 | 161 |
Z6 | 1.58 | 2.04 ± 0.08 | 12.91 ± 0.51 | 193 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Li, Z.; Peng, M.; Zeng, Z.; Huang, Z.; Liu, F.; Chen, X.; Liang, Z.; Wang, J. Synthesis of Bis(N,N-diethyl)aniline-Based, Nonlinear, Optical Chromophores with Increased Electro-Optic Activity by Optimizing the Thiolated Isophorone Bridge. Symmetry 2022, 14, 586. https://doi.org/10.3390/sym14030586
Huang X, Li Z, Peng M, Zeng Z, Huang Z, Liu F, Chen X, Liang Z, Wang J. Synthesis of Bis(N,N-diethyl)aniline-Based, Nonlinear, Optical Chromophores with Increased Electro-Optic Activity by Optimizing the Thiolated Isophorone Bridge. Symmetry. 2022; 14(3):586. https://doi.org/10.3390/sym14030586
Chicago/Turabian StyleHuang, Xiaoqing, Ziheng Li, Meishan Peng, Ziying Zeng, Zeling Huang, Fenggang Liu, Xunyu Chen, Zhiwei Liang, and Jiahai Wang. 2022. "Synthesis of Bis(N,N-diethyl)aniline-Based, Nonlinear, Optical Chromophores with Increased Electro-Optic Activity by Optimizing the Thiolated Isophorone Bridge" Symmetry 14, no. 3: 586. https://doi.org/10.3390/sym14030586
APA StyleHuang, X., Li, Z., Peng, M., Zeng, Z., Huang, Z., Liu, F., Chen, X., Liang, Z., & Wang, J. (2022). Synthesis of Bis(N,N-diethyl)aniline-Based, Nonlinear, Optical Chromophores with Increased Electro-Optic Activity by Optimizing the Thiolated Isophorone Bridge. Symmetry, 14(3), 586. https://doi.org/10.3390/sym14030586