Exploration of Temperature Distribution through a Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade Approximant
Abstract
:1. Introduction
2. Mathematical Formulation
- and are taken to be exponentially varying with temperature change.
- varies linearly with temperature and exponentially varies with temperature change.
3. The Fundamental Concept of DTM-Pade Approximant
4. Solution Procedure with DTM-Pade Approximant
5. Fin Efficiency
6. Result and Discussion
7. Inspecting the Thermal Behavior of a Longitudinal Fin Using ANSYS
- Since aluminum is an excellent thermal and electrical conductor, Aluminum Alloy 6061 (AA 6061) and Cast Iron with constant thermal conductivity 300 and 55 are taken as fin materials.
- One-dimensional heat conduction is considered along the longitudinal direction.
- The convective heat transfer coefficient (39.9 ) is considered over the complete fin surface.
- The temperature at the fin base is 550 K, and the ambient temperature is 283 K.
8. Final Remarks
- Enhancement in the scale of thermo-geometric parameters reduces temperature dispersal in a fin for both cases.
- Temperature distribution enriches for a larger magnitude of thermal conductivity parameter in the case of linear temperature-dependent thermal conductivity.
- Larger values of the internal heat generation and heat transfer parameter upsurge the thermal distribution in both cases.
- The efficiency of a fin varies with prescribed non-dimensional thermal parameters under internal heat generation.
- The thermal distribution of a longitudinal fin is studied using ANSYS software by considering the material of the fin body as AA 6061 and Cast Iron. The temperature is higher at the base, decreasing monotonically towards the fin tip.
- The analytical solution and numerical results obtained by the DTM-Pade approximant afford higher accuracy than other techniques.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Fin’s thickness | |
Length (dimensionless) | |
Fin’s cross-sectional area | |
Thermal conductivity at ambient temperature | |
Dimensionless heat transfer | |
Exponential indexes of convection heat transfer coefficient | |
Variable thermal conductivity(dimensionless) | |
Convective heat transfer coefficient | |
Thermo-geometric parameter | |
Non-dimensional temperature | |
Exponential indexes of thermal conductivity | |
Fin axial distance | |
Thermal conductivity variation parameter | |
Base temperature | |
Width | |
Length | |
Ambient temperature | |
Uniform internal heat generation | |
Heat transfer coefficient at the fin’s base | |
Fin efficiency | |
Thermal conductivity | |
Reference value of convection heat transfer coefficient | |
Dimensionless internal heat generation parameter | |
Reference values of thermal Conductivity | |
Perimeter | |
Temperature |
References
- Khan, S.U.; Tlili, I. Significance of Activation Energy and Effective Prandtl Number in Accelerated Flow of Jeffrey Nanoparticles With Gyrotactic Microorganisms. J. Energy Resour. Technol. 2020, 142, 112101. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Moghaddam, M.E.; Asadi, A.; Mogharrebi, A.; Ganji, D. Effect of internal fins along with Hybrid Nano-Particles on solid process in star shape triplex Latent Heat Thermal Energy Storage System by numerical simulation. Renew. Energy 2020, 154, 497–507. [Google Scholar] [CrossRef]
- Khan, S.U.; Al-Khaled, K.; Aldabesh, A.; Awais, M.; Tlili, I. Bioconvection flow in accelerated couple stress nanoparticles with activation energy: Bio-fuel applications. Sci. Rep. 2021, 11, 3331. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.; Kumar, R.N.; Gowda, R.J.P.; Khan, S.U.; Khan, M.I.; Prasannakumara, B.C.; Muhammad, T. Impact of Hall current and homogenous–heterogenous reactions on MHD flow of GO-MoS2/water (H2O)-ethylene glycol (C2H6O2) hybrid nanofluid past a vertical stretching surface. Waves Random Complex Media 2021, 1–18. [Google Scholar] [CrossRef]
- Khan, M.I.; Qayyum, S.; Chu, Y.-M.; Khan, N.B.; Kadry, S. Transportation of Marangoni convection and irregular heat source in entropy optimized dissipative flow. Int. Commun. Heat Mass Transf. 2021, 120, 105031. [Google Scholar] [CrossRef]
- Madhukesh, J.K.; Kumar, R.N.; Gowda, R.J.P.; Prasannakumara, B.C.; Ramesh, G.K.; Khan, M.I.; Khan, S.U.; Chu, Y.-M. Numerical simulation of AA7072-AA7075/water-based hybrid nanofluid flow over a curved stretching sheet with Newtonian heating: A non-Fourier heat flux model approach. J. Mol. Liq. 2021, 335, 116103. [Google Scholar] [CrossRef]
- Raza, A.; Khan, S.U.; Al-Khaled, K.; Khan, M.I.; Haq, A.U.; Alotaibi, F.; Allah, A.M.A.; Qayyum, S. A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force. Chem. Phys. Lett. 2021, 787, 139277. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Mogharrebi, A.; Asadi, A.; Paikar, M.; Ganji, D. Effect of fin and hybrid nano-particles on solid process in hexagonal triplex Latent Heat Thermal Energy Storage System. J. Mol. Liq. 2020, 300, 112347. [Google Scholar] [CrossRef]
- Hosseinzadeh, K.; Montazer, E.; Shafii, M.B.; Ganji, A. Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles. J. Energy Storage 2021, 34, 102177. [Google Scholar] [CrossRef]
- Kundu, B. Performance and optimum design analysis of longitudinal and pin fins with simultaneous heat and mass transfer: Unified and comparative investigations. Appl. Therm. Eng. 2007, 27, 976–987. [Google Scholar] [CrossRef]
- Aziz, A.; Bouaziz, M. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity. Energy Convers. Manag. 2011, 52, 2876–2882. [Google Scholar] [CrossRef]
- Najafabadi, M.F.; Rostami, H.T.; Hosseinzadeh, K.; Ganji, D.D. Thermal analysis of a moving fin using the radial basis function approximation. Heat Transf. 2021, 50, 7553–7567. [Google Scholar] [CrossRef]
- Sowmya, G.; Sarris, I.E.; Vishalakshi, C.S.; Kumar, R.S.V.; Prasannakumara, B.C. Analysis of Transient Thermal Distribution in a Convective–Radiative Moving Rod Using Two-Dimensional Differential Transform Method with Multivariate Pade Approximant. Symmetry 2021, 13, 1793. [Google Scholar] [CrossRef]
- Sowmya, G.; Kumar, R.S.V.; Alsulami, M.D.; Prasannakumara, B.C. Thermal stress and temperature distribution of an annular fin with variable temperature-dependent thermal properties and magnetic field using DTM-Pade approximant. Waves Random Complex Media 2022, 1–29. [Google Scholar] [CrossRef]
- Zhang, H.J.; Sun, K.F. Conduction from Longitudinal Fin of Rectangular Profile with Exponential Vary Heat Transfer Coefficient. Adv. Mater. Res. 2012, 614–615, 311–314. [Google Scholar]
- Buikis, A.; Pagodkina, I. Comparison of Analytical and Numerical Solutions for a Two-Dimensinal Longitudal Fin of Rectangular Profile. Latv. J. Phys. Tech. Sci. 1996. [Google Scholar] [CrossRef]
- Kezzar, M.; Tabet, I.; Eid, M.R. A new analytical solution of longitudinal fin with variable heat generation and thermal conductivity using DRA. Eur. Phys. J. Plus 2020, 135, 120. [Google Scholar] [CrossRef]
- Wang, F.; Kumar, R.V.; Sowmya, G.; El-Zahar, E.R.; Prasannakumara, B.; Khan, M.I.; Khan, S.U.; Malik, M.; Xia, W.-F. LSM and DTM-Pade approximation for the combined impacts of convective and radiative heat transfer on an inclined porous longitudinal fin. Case Stud. Therm. Eng. 2022, 101846. [Google Scholar] [CrossRef]
- Alhejaili, W.; Kumar, R.V.; El-Zahar, E.R.; Sowmya, G.; Prasannakumara, B.; Khan, M.I.; Yogeesha, K.; Qayyum, S. Analytical solution for temperature equation of a fin problem with variable temperature-dependent thermal properties: Application of LSM and DTM-Pade approximant. Chem. Phys. Lett. 2022, 793, 139409. [Google Scholar] [CrossRef]
- Torabi, M.; Aziz, A.; Zhang, K. A comparative study of longitudinal fins of rectangular, trapezoidal and concave parabolic profiles with multiple nonlinearities. Energy 2013, 51, 243–256. [Google Scholar] [CrossRef]
- Mallick, A.; Ghosal, S.; Sarkar, P.K.; Ranjan, R. Homotopy Perturbation Method for Thermal Stresses in an AnnularFinwith Variable Thermal Conductivity. J. Therm. Stress. 2014, 38, 110–132. [Google Scholar] [CrossRef]
- Atouei, S.; Hosseinzadeh, K.; Hatami, M.; Ghasemi, S.E.; Sahebi, S.; Ganji, D. Heat transfer study on convective–radiative semi-spherical fins with temperature-dependent properties and heat generation using efficient computational methods. Appl. Therm. Eng. 2015, 89, 299–305. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. Heat transfer from moving exponential fins exposed to heat generation. Int. J. Heat Mass Transf. 2018, 116, 346–351. [Google Scholar] [CrossRef]
- Padmanabhan, S.; Thiagarajan, S.; Kumar, A.D.R.; Prabhakaran, D.; Raju, M. Investigation of temperature distribution of fin profiles using analytical and CFD analysis. Mater. Today: Proc. 2021, 44, 3550–3556. [Google Scholar] [CrossRef]
- Hosseinzadeh, S.; Hasibi, A.; Ganji, D. Thermal analysis of moving porous fin wetted by hybrid nanofluid with trapezoidal, concave parabolic and convex cross sections. Case Stud. Therm. Eng. 2022, 30, 101757. [Google Scholar] [CrossRef]
- Minkler, W.S.; Rouleau, W.T. The Effects of Internal Heat Generation on Heat Transfer in Thin Fins. Nucl. Sci. Eng. 1960, 7, 400–406. [Google Scholar] [CrossRef]
- Venkitesh, V.; Mallick, A. Thermal analysis of a convective–conductive–radiative annular porous fin with variable thermal parameters and internal heat generation. J. Therm. Anal. 2020, 147, 1519–1533. [Google Scholar] [CrossRef]
- Majhi, T.; Kundu, B. New Approach for Determining Fin Performances of an Annular Disc Fin with Internal Heat Generation. In Advances in Mechanical Engineering; Springer: Singapore, 2020; pp. 1033–1043. [Google Scholar] [CrossRef]
- Das, R.; Kundu, B. Prediction of Heat-Generation and Electromagnetic Parameters from Temperature Response in Porous Fins. J. Thermophys. Heat Transf. 2021, 35, 761–769. [Google Scholar] [CrossRef]
- Jayaprakash, M.; Alzahrani, H.A.; Sowmya, G.; Kumar, R.V.; Malik, M.; Alsaiari, A.; Prasannakumara, B. Thermal distribution through a moving longitudinal trapezoidal fin with variable temperature-dependent thermal properties using DTM-Pade approximant. Case Stud. Therm. Eng. 2021, 28, 101697. [Google Scholar] [CrossRef]
- Zhou, J.K. Differential Transformation and Its Applications for Electrical Circuits; Huazhong University Press: Wuhan, China, 1986. [Google Scholar]
- Kundu, B.; Lee, K.-S. Analytical tools for calculating the maximum heat transfer of annular stepped fins with internal heat generation and radiation effects. Energy 2014, 76, 733–748. [Google Scholar] [CrossRef]
- Moradi, A.; Hayat, T.; Alsaedi, A. Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Convers. Manag. 2014, 77, 70–77. [Google Scholar] [CrossRef]
- Christopher, A.J.; Magesh, N.; Gowda, R.J.P.; Kumar, R.N.; Kumar, R.S.V. Hybrid nanofluid flow over a stretched cylinder with the impact of homogeneous–heterogeneous reactions and Cattaneo–Christov heat flux: Series solution and numerical simulation. Heat Transf. 2021, 50, 3800–3821. [Google Scholar] [CrossRef]
- Kundu, B.; Yook, S.-J. An accurate approach for thermal analysis of porous longitudinal, spine and radial fins with all nonlinearity effects—Analytical and unified assessment. Appl. Math. Comput. 2021, 402, 126124. [Google Scholar] [CrossRef]
- Baker, G.A., Jr. Essentials of Padé Approximants; Academic Press: New York, NY, USA, 1975; 317p, ISBN 0-12-074885-X. [Google Scholar]
- Baker, G.A.; Graves-Morris, P.R. Padé Approximants: Extensions and Applications; Addison-Wesley: Boston, MA, USA, 1981; Volume 2. [Google Scholar]
- Rashidi, M.M.; Keimanesh, M. Using Differential Transform Method and Padé Approximant for Solving MHD Flow in a Laminar Liquid Film from a Horizontal Stretching Surface. Math. Probl. Eng. 2010, 2010, 491319. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Laraqi, N.; Sadri, S.M. A novel analytical solution of mixed convection about an inclined flat plate embedded in a porous medium using the DTM-Padé. Int. J. Therm. Sci. 2010, 49, 2405–2412. [Google Scholar] [CrossRef]
- Saha, D.; Sengupta, S. Dual DTM-Padé approximations on free convection MHD mass transfer flow of nanofluid through a stretching sheet in presence of Soret and Dufour Phenomena. WSEAS Trans. Fluid Mech. 2020, 15, 23–40. [Google Scholar] [CrossRef]
- Moradi, A.; Ahmadikia, H. Investigation of Effect Thermal Conductivity on Straight Fin Performance with DTM. Int. J. Eng. Appl. Sci. 2011, 3, 42–54. [Google Scholar]
- Jawad, A.J.M. Differential Transformation Method for Solving Nonlinear Heat Transfer Equations. Al-Rafidain Univ. Coll. Sci. 2013, 32, 180–194. [Google Scholar]
- Boyd, J.P. Padé approximant algorithm for solving nonlinear ordinary differential equation boundary value problems on an unbounded domain. Comput. Phys. 1997, 11, 299. [Google Scholar] [CrossRef]
- Ismail, T.; Kezzar, M.; Touafe, K.; Bellel, N.; Gherieb, S.; Khelifa, A.; Adouane, M. Adomian Decomposition Method And Padé Approximation To Determine Fin Efficiency Of Convective Solar Air Collector In Straight Fins. Int. J. Math. Model. Comput. 2015, 5, 335–346. [Google Scholar]
- Languri, E.M.; Ganji, D.D.; Jamshidi, N. Variational Iteration and Homotopy perturbation methods for fin efficiency of convective straight fins with temperature dependent thermal conductivity. In Proceedings of the 5th WSEAS international conference On FLUID MECHANICS (Fluids 08), Acapulco, Mexico, 25–27 January 2008; Volume 25. [Google Scholar]
- Sun, S.-W.; Li, X.-F. Exact solution of the nonlinear fin problem with exponentially temperature-dependent thermal conductivity and heat transfer coefficient. Pramana 2020, 94, 94. [Google Scholar] [CrossRef]
HPM (Languri et al. [45]) | VIM (Languri et al. [45]) | DTM-Pade | Error | |
---|---|---|---|---|
0 | 0.886819 | 0.886819 | 0.886818 | 0.000001 |
0.2 | 0.891257 | 0.891257 | 0.891256 | 0.000001 |
0.4 | 0.904614 | 0.904614 | 0.904614 | 0.000000 |
0.6 | 0.927026 | 0.927026 | 0.927026 | 0.000000 |
0.8 | 0.958715 | 0.958715 | 0.958715 | 0.000000 |
1.0 | 1.000000 | 1.000000 | 1.000000 | 0.000000 |
RKF-45 | Present Result | RKF-45 | Present Result | RKF-45 | Present Result | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 0.651268 | 0.647021 | 0.4247 | 0.726859 | 0.724623 | 0.2236 | 0.825904 | 0.825302 | 0.0602 |
0.1 | 0.653087 | 0.648719 | 0.4368 | 0.728928 | 0.726658 | 0.2270 | 0.827560 | 0.826954 | 0.0606 |
0.2 | 0.658660 | 0.653921 | 0.4739 | 0.735203 | 0.732824 | 0.2379 | 0.832539 | 0.831920 | 0.0619 |
0.3 | 0.668357 | 0.662962 | 0.5395 | 0.745885 | 0.743321 | 0.2564 | 0.840872 | 0.840234 | 0.0638 |
0.4 | 0.682846 | 0.676443 | 0.6403 | 0.761322 | 0.758489 | 0.2833 | 0.852614 | 0.851948 | 0.0666 |
0.5 | 0.703190 | 0.695290 | 0.7900 | 0.782032 | 0.778828 | 0.3204 | 0.867838 | 0.867136 | 0.0702 |
RKF-45 | Present Result | RKF-45 | Present Result | RKF-45 | PresentResult | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 1.445973 | 1.445763 | 0.0210 | 1.073794 | 1.073862 | 0.0068 | 0.735737 | 0.733681 | 0.2056 |
0.1 | 1.441440 | 1.441231 | 0.0209 | 1.073090 | 1.073158 | 0.0068 | 0.737796 | 0.735710 | 0.2086 |
0.2 | 1.427851 | 1.427642 | 0.0209 | 1.070976 | 1.071045 | 0.0069 | 0.744036 | 0.741857 | 0.2179 |
0.3 | 1.405233 | 1.405026 | 0.0207 | 1.067438 | 1.067508 | 0.0070 | 0.754636 | 0.752300 | 0.2336 |
0.4 | 1.373631 | 1.373427 | 0.0204 | 1.062457 | 1.062528 | 0.0071 | 0.769912 | 0.767346 | 0.2566 |
0.5 | 1.333109 | 1.332909 | 0.0200 | 1.056002 | 1.056075 | 0.0073 | 0.790323 | 0.787444 | 0.2879 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.S.V.; Kumar, R.N.; Sowmya, G.; Prasannakumara, B.C.; Sarris, I.E. Exploration of Temperature Distribution through a Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade Approximant. Symmetry 2022, 14, 690. https://doi.org/10.3390/sym14040690
Kumar RSV, Kumar RN, Sowmya G, Prasannakumara BC, Sarris IE. Exploration of Temperature Distribution through a Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade Approximant. Symmetry. 2022; 14(4):690. https://doi.org/10.3390/sym14040690
Chicago/Turabian StyleKumar, Ravikumar Shashikala Varun, Rangaswamy Naveen Kumar, Ganeshappa Sowmya, Ballajja Chandrappa Prasannakumara, and Ioannis E. Sarris. 2022. "Exploration of Temperature Distribution through a Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade Approximant" Symmetry 14, no. 4: 690. https://doi.org/10.3390/sym14040690
APA StyleKumar, R. S. V., Kumar, R. N., Sowmya, G., Prasannakumara, B. C., & Sarris, I. E. (2022). Exploration of Temperature Distribution through a Longitudinal Rectangular Fin with Linear and Exponential Temperature-Dependent Thermal Conductivity Using DTM-Pade Approximant. Symmetry, 14(4), 690. https://doi.org/10.3390/sym14040690