Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approximation of Data on the Basis of the Autoencoder Neural Network
2.2. Detection of Anomalies in Data on the Basis of the Wavelet Transform
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dorman, I.V.; Dorman, L.I. How cosmic rays were discovered and why they received this misnomer. Adv. Space Res. 2014, 53, 1388–1404. [Google Scholar] [CrossRef]
- Dorman, L.I.; Dorman, I.V. The beginning of cosmic ray astrophysics. Adv. Space Res. 2014, 53, 1379–1387. [Google Scholar] [CrossRef]
- González Hernández, E.; Arteaga, J.C.; Fernández Tellez, A.; Rodríguez-Cahuantzi, M. Cosmic-ray studies with experimental apparatus at LHC. Symmetry 2020, 12, 1694. [Google Scholar] [CrossRef]
- Papailiou, M.; Mavromichalaki, H.; Belov, A.; Eroshenko, E.; Yanke, V. Precursor effects in different cases of forbush decreases. Sol. Phys. 2012, 276, 337–350. [Google Scholar] [CrossRef]
- Mendonça, R.R.S.; Wang, C.; Braga, C.R.; Echer, E.; Dal Lago, A.; Costa, J.E.R.; Munakata, K.; Li, H.; Liu, Z.; Raulin, J.P.; et al. Analysis of cosmic rays’ atmospheric effects and their relationships to cutoff rigidity and zenith angle using global muon detector network Data. J. Geophys. Res. Space Phys. 2019, 124, 9791–9813. [Google Scholar] [CrossRef] [Green Version]
- Swain, J. The Pierre Auger Observatory. AIP Conf. Proc. 2004, 698, 366. [Google Scholar] [CrossRef] [Green Version]
- Galper, A.M.; Sparvoli, R.; Adriani, O.; Barbarino, G.; Bazilevskaya, G.A.; Bellotti, R.; Boezio, M.; Bogomolov, E.A.; Bongi, M.; Bonvicini, V.; et al. The PAMELA experiment: A decade of cosmic ray physics in space. J. Phys. Conf. Ser. 2017, 798, 012033. [Google Scholar] [CrossRef] [Green Version]
- Behlmann, M.; Konyushikhin, M.; Pashnin, A.; Shan, B.; Wei, J.; Xu, Y.; Qu, Z. The official website of the AMS experiment. In Proceedings of the 24th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2019), Adelaide, South Australia, 4–8 November 2019; EDP Sciences: Les Ulis, France, 2020; Volume 245, p. 08022. [Google Scholar] [CrossRef]
- Reimann, R. Monitoring and multi-messenger astronomy with IceCube. Galaxies 2019, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Andrei, C.-O.; Lahtinen, S.; Nordman, M.; Näränen, J.; Koivula, H.; Poutanen, M.; Hyyppä, J. GPS time series analysis from aboa the finnish antarctic research station. Remote Sens. 2018, 10, 1937. [Google Scholar] [CrossRef] [Green Version]
- Iglesias-Martínez, M.E.; Castro-Palacio, J.C.; Scholkmann, F.; Milián-Sánchez, V.; Fernandez de Cordoba, P.; Mocholí-Salcedo, A.; Mocholi Belenguer, F.; Kolombet, V.A.; Panchelyuga, V.A.; Verdú, G. Correlations between background radiation inside a mul-tilayer interleaving structure, geomagnetic activity, and cosmic radiation: A fourth-order cumulant-based correlation analysis. Mathematics 2020, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Homola, P.; Beznosko, D.; Bhatta, G.; Bibrzycki, Ł.; Borczyńska, M.; Bratek, Ł.; Budnev, N.; Burakowski, D.; Alvarez-Castillo, D.; Cheminant, K.A.; et al. Cosmic-ray extremely distributed observatory. Symmetry 2020, 12, 1835. [Google Scholar] [CrossRef]
- Flynn, K.D.; Wyatt, B.M.; McInnes, K.J. Novel cosmic ray neutron sensor accurately captures field-scale soil moisture trends under heterogeneous soil textures. Water 2021, 13, 3038. [Google Scholar] [CrossRef]
- Vather, T.; Everson, C.S.; Franz, T.E. The applicability of the cosmic ray neutron sensor to simultaneously monitor soil water content and biomass in an acacia mearnsii forest. Hydrology 2020, 7, 48. [Google Scholar] [CrossRef]
- Aghion, S.; Amsler, C.; Bonomi, G.; Brusa, R.S.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Comparat, D.; Consolati, G.; et al. Compression of a mixed antiproton and electron non-neutral plasma to high densities. Eur. Phys. J. D 2018, 72, 1–11. [Google Scholar] [CrossRef]
- Tezari, A.; Paschalis, P.; Stassinakis, A.; Mavromichalaki, H.; Karaiskos, P.; Gerontidou, M.; Alexandridis, D.; Kanellakopoulos, A.; Crosby, N.; Dierckxsens, M. Radiation exposure in the lower atmosphere during different periods of solar activity. Atmosphere 2022, 13, 166. [Google Scholar] [CrossRef]
- Ortiz, E.; Mendoza, B.; Gay, C.; Mendoza, V.M.; Pazos, M.; Garduño, R. Simulation and evaluation of the radiation dose deposited in human tissues by atmospheric neutrons. Appl. Sci. 2021, 11, 8338. [Google Scholar] [CrossRef]
- Gaisser, T. Cosmic rays and particle physics at extremely high energies. J. Frankl. Inst. 1974, 298, 271–287. [Google Scholar] [CrossRef]
- Schlickeiser, R. Cosmic Ray Astrophysics; Springer GmbH & Co., KG.: Berlin/Heidelberg, Germany, 2002; p. 519. [Google Scholar]
- Kuznetsov, V.D. Space weather and risks of space activity. Space Tech. Technol. 2014, 3, 3–13. [Google Scholar]
- Dorman, L.; Tassev, Y.; Velinov, P.I.Y.; Mishev, A.; Tomova, D.; Mateev, L. Investigation of exceptional solar activity in September 2017: GLE 72 and unusual Forbush decrease in GCR. J. Phys. Conf. Ser. 2019, 1181, 012070. [Google Scholar] [CrossRef]
- Dorman, L.I. Space weather and dangerous phenomena on the earth: Principles of great geomagnetic storms forcasting by online cosmic ray data. Ann. Geophys. 2005, 23, 2997–3002. [Google Scholar] [CrossRef] [Green Version]
- Munakata, K.; Bieber, J.W.; Yasue, S.-I.; Kato, C.; Koyama, M.; Akahane, S.; Fujimoto, K.; Fujii, Z.; Humble, J.E.; Duldig, M.L. Precursors of geomagnetic storms observed by the muon detector network. J. Geophys. Res. Space Phys. 2000, 105, 27457–27468. [Google Scholar] [CrossRef]
- Badruddin, B.; Aslam, O.P.M.; Derouich, M.; Asiri, H.; Kudela, K. Forbush decreases and geomagnetic storms during a highly disturbed solar and interplanetary period, 4–10 September 2017. Space Weather 2019, 17, 487. [Google Scholar] [CrossRef]
- Mandrikova, O.V.; Solovev, I.S.; Zalyaev, T.L. Methods of analysis of geomagnetic field variations and cosmic ray data. Earth Planet Space 2014, 66, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mandrikova, O.; Mandrikova, B. Method of wavelet-decomposition to research cosmic ray variations: Application in space weather. Symmetry 2021, 13, 2313. [Google Scholar] [CrossRef]
- Livada, M.; Mavromichalaki, H.; Plainaki, C. Galactic cosmic ray spectral index: The case of Forbush decreases of March 2012. Astrophys. Space Sci. 2017, 363, 8. [Google Scholar] [CrossRef]
- Kudela, K.; Brenkus, R. Cosmic ray decreases and geomagnetic activity: List of events 1982–2002. J. Atmos. Sol. Terr. Phys. 2004, 66, 1121–1126. [Google Scholar] [CrossRef]
- Lara, A.; Gopalswamy, N.; Caballero-Lopez, R.A.; Yashiro, S.; Xie, H.; Valdes-Galicia, J.F. Coronal mass ejections and galactic cosmic ray modulation. Astrophys. J. 2005, 625, 441–450. [Google Scholar] [CrossRef]
- Kudela, K.; Rybak, J.; Antalová, A.; Storini, M. Time evolution of low-frequency periodicities in cosmic ray intensity. Sol. Phys. 2002, 205, 165–175. [Google Scholar] [CrossRef]
- Grigoriev, V.G. Global survey method in real time and space weather forecast. Izvestiya RAN. Physics 2015, 79, 703–707. [Google Scholar]
- Real Time Data Base for the Measurements of High-Resolution Neutron Monitor. Available online: www.nmdb.eu (accessed on 1 October 2021).
- SWS Australian Antarctic Division. Available online: http://www.sws.bom.gov.au/Geophysical/1/4 (accessed on 1 October 2021).
- Hachaj, T.; Bibrzycki, Ł.; Piekarczyk, M. Recognition of cosmic ray images obtained from CMOS sensors used in mobile phones by approximation of uncertain class assignment with deep convolutional neural network. Sensors 2021, 21, 1963. [Google Scholar] [CrossRef]
- Zotov, M. Application of neural networks to classification of data of the TUS orbital telescope. Universe 2021, 7, 221. [Google Scholar] [CrossRef]
- Koundal, P. Graph Neural Networks and Application for Cosmic-Ray Analysis. In Proceedings of the 5th International Workshop on Deep Learning in Computational Physics, Online, 28–29 June 2021. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C.M.; Alves Junior, A.A.; Amin, N.M.; An, R.; et al. Study of mass composition of cosmic rays with IceTop and IceCube. In Proceedings of the 37th International Cosmic Ray Conference, Berlin, Germany, 15–22 July 2021. [Google Scholar] [CrossRef]
- Chui, C.K. An Introduction to Wavelets; Wavelet Analysis and Its Applications; Academic Press: Boston, MA, USA, 1992; ISBN 978-0-12-174584-4. [Google Scholar]
- Daubechies, I. Ten Lectures on Wavelets; CBMS-NSF Regional Conference Series in Applied Mathematics; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1992. [Google Scholar]
- Astafyeva, N.M.; Bazilevskaya, G.A. Long-term changes of cosmic ray intensity: Spectral behaviour and 27-day variations. Phys. Chem. Earth 1999, 25, 129–132. [Google Scholar] [CrossRef]
- Zhu, X.L.; Xue, B.S.; Cheng, G.S.; Cang, Z. Application of wavelet analysis of cosmic ray in prediction of great geomagnetic storms. Chin. J. Geophys. 2015, 58, 2242–2249. [Google Scholar] [CrossRef]
- Mandrikova, O.V.; Rodomanskaya, A.I.; Mandrikova, B.S. Application of the new wavelet-decomposition method for the analysis of geomagnetic data and cosmic ray variations. Geomagn. Aeron. 2021, 61, 492–507. [Google Scholar] [CrossRef]
- Mallat, S.G. A Wavelet Tour of Signal Processing; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Stamper, R.; Lockwood, M.; Wild, M.N.; Clark, T.D.G. Solar causes of the long-term increase in geomagnetic activity. J. Geophys. Res. 1999, 104, 325. [Google Scholar] [CrossRef] [Green Version]
- Mandrikova, O.; Mandrikova, B.; Rodomanskay, A. Method of constructing a nonlinear approximating scheme of a complex signal: Application pattern recognition. Mathematics 2021, 9, 737. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016; 800p. [Google Scholar]
- Pattanayak, S. Pro Deep Learning with TensorFlow: A Mathematical Approach to Advanced Artificial Intelligence in Python; Apress: Bangalore, India; p. 398.
- Ljung, G.M.; Box, G.E. On a measure of lack of fit in time series models. Biometrika 1978, 65, 297–303. [Google Scholar] [CrossRef]
- Wald, A. Statistical Decision Functions; John Wiley & Sons: New York, NY, USA; Chapman & Hall: London, UK, 1950. [Google Scholar]
- Witte, R.S.; Witte, J.S. Statistics, 11th ed.; Wiley: New York, NY, USA, 2017; p. 496. [Google Scholar]
- Abunina, M.A.; Belov, A.V.; Eroshenko, E.A.; Abunin, A.A.; Yanke, V.G.; Melkumyan, A.A.; Shlyk, N.S.; Pryamushkina, I.I. Ring of stations method in cosmic rays variations research. Sol. Phys. 2020, 295, 69. [Google Scholar] [CrossRef]
- Moraal, H.; Belov, A.; Clem, J. Design and co-ordination of multi-station international neutron monitor network. Space Sci. Rev. 2000, 93, 285–303. [Google Scholar] [CrossRef]
- Mandrikova, O.; Polozov, Y.; Fetisova, N.; Zalyaev, T. Analysis of the dynamics of ionospheric parameters during periods of increased solar activity and magnetic storms. J. Atmos. Sol. Terr. Phys. 2018, 181, 116–126. [Google Scholar] [CrossRef]
- Institute of Applied Geophysics. Available online: http://ipg.geospace.ru/ (accessed on 11 October 2021).
- Laboratory of X-Ray Astronomy of the Sun. Available online: https://tesis.lebedev.ru/magnetic_storms.html?m=5&d=10&y=2019 (accessed on 11 October 2021).
- Bartels, J. The standardized index, Ks, and the planetary index, Kp. IATME Bull 1949, 97, 97–120. [Google Scholar]
- IZMIRAN Space Weather Forecast Center. Catalog of Forbush Effects and Interplanetary Disturbances. Available online: http://spaceweather.izmiran.ru/rus/fds2019.html (accessed on 11 October 2021).
- Thomas, S.; Owens, M.; Lockwood, M.; Barnard, L.; Scott, C. Near-earth cosmic ray decreases associated with remote coronal mass ejections. Astrophys. J. 2015, 801, 5. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandrikova, O.; Mandrikova, B. Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder. Symmetry 2022, 14, 744. https://doi.org/10.3390/sym14040744
Mandrikova O, Mandrikova B. Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder. Symmetry. 2022; 14(4):744. https://doi.org/10.3390/sym14040744
Chicago/Turabian StyleMandrikova, Oksana, and Bogdana Mandrikova. 2022. "Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder" Symmetry 14, no. 4: 744. https://doi.org/10.3390/sym14040744
APA StyleMandrikova, O., & Mandrikova, B. (2022). Hybrid Method for Detecting Anomalies in Cosmic ray Variations Using Neural Networks Autoencoder. Symmetry, 14(4), 744. https://doi.org/10.3390/sym14040744