Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Feje´r fractional type inequalities for h-convex and harmonically h-Convex interval-valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
- Sharma, N.; Bisht, J.; Mishra, S.K.; Hamdi, A. Some majorization integral inequalities for functions defined on rectangles via strong convexity. J. Inequal. Spec. Funct. 2019, 10, 21–34. [Google Scholar]
- Khan, M.B.; Zaini, H.G.; Treanță, S.; Soliman, M.S.; Nonlaopon, K. Riemann–Liouville fractional integral inequalities for generalized preinvex functions of interval-valued settings based upon pseudo order relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Sharma, N.; Mishra, S.K.; Hamdi, A. A weighted version of Hermite-Hadamard type inequalities for strongly GA-convex functions. Int. J. Adv. Appl. Sci. 2020, 7, 113–118. [Google Scholar]
- Zhao, D.; An, T.; Ye, G.; Torres, D.F.M. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. Math. Inequal. Appl. 2020, 23, 95–105. [Google Scholar]
- Sharma, N.; Bisht, J.; Mishra, S.K. Hermite-Hadamard type inequalities for functions whose derivatives are strongly η-convex via fractional integrals. In Indo-French Seminar on Optimization, Variational Analysis and Applications; Springer: Berlin, Germany, 2020; pp. 83–102. [Google Scholar]
- Hanson, M.A. On sufficiency of the kuhn-tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Craven, B.D.; Glover, B.M. Invex functions and duality. J. Aust. Math. Soc. 1985, 39, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Ben-Israel, A.; Mond, B. What is invexity? ANZIAM J. 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Jeyakumar, V. A class of nonconvex functions and mathematical programming. Bull. Aust. Math. Soc. 1988, 38, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Weir, T.; Mond, B. Preinvex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
- Dragomir, S.S. On the Hadamard’s inequlality for convex functions on the coordinates in a rectangle from the plane. Taiwan J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
- Latif, M.A.; Dragomir, S.S. Some Hermite-Hadamard type inequalities for functions whose partial derivatives in absloute value are preinvex on the cooordinates. Facta Univ. Math. Inform. 2013, 28, 257–270. [Google Scholar]
- Matłoka, M. On some Hadamard type inequalities for (h1,h2)-preinvex functions on the coordinates. J. Inequal. Appl. 2013, 2013, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Matłoka, M. On Some new inequalities for differentiable (h1,h2)-preinvex functions on the coordinates. Math. Stat. 2014, 2, 6–14. [Google Scholar] [CrossRef]
- Mehmood, S.; Zafar, F.; Yasmin, N. Hermite-Hadamard-Feje´r type inequalities for preinvex functions using fractional integrals. Mathematics 2019, 7, 467. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I.; Rashid, S. Some new classes of preinvex functions and inequalities. Mathematics 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.M. Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via preinvex functions. Int. J. Nonlinear Anal. Appl. 2022, 13, 3333–3345. [Google Scholar]
- Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
- Bhurjee, A.K.; Panda, G. Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 2015, 52, 156–167. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, S.; Li, L.; Feng, Q. The KKT optimality conditions in a class of generalized convex optimization problems with an interval-valued objective function. Optim. Lett. 2014, 8, 607–631. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
- Guo, Y.; Ye, G.; Zhao, D.; Liu, W. gH-symmetrically derivative of interval-valued functions and applications in interval-valued optimization. Symmetry 2019, 11, 1203. [Google Scholar] [CrossRef] [Green Version]
- Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
- Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2011, 55, 9–15. [Google Scholar] [CrossRef]
- Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
- Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
- Budak, H.; Tunç, T.; Sarikaya, M. Fractional Hermite-Hadamard type inequalities for interval-valued functions. Proc. Amer. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
- Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 1–14. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On Hermite-Hadamard type inequalities for coordinated h-convex interval-valued functions. Mathematics 2021, 9, 2352. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y. Fractional Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
- Kara, H.; Budak, H.; Ali, M.A.; Sarikaya, M.Z.; Chu, Y.M. Weighted Hermite–Hadamard type inclusions for products of coordinated convex interval-valued functions. Adv. Differ. Equ. 2021, 2021, 104. [Google Scholar] [CrossRef]
- Kara, H.; Ali, M.A.; Budak, H. Hermite-Hadamard type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals. Math. Methods Appl. Sci. 2021, 44, 104–123. [Google Scholar] [CrossRef]
- Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard type fractional inclusions for interval-valued preinvex functions. Mathematics 2022, 10, 264. [Google Scholar] [CrossRef]
- Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite-Hadamard type inequalities for interval-valued coordinated functions. Adv. Differ. Equ. 2021, 2021, 32. [Google Scholar] [CrossRef]
- Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite-Hadamard inclusions for coordinated interval-valued functions via post-quantum calculus. Symmetry 2021, 13, 1216. [Google Scholar] [CrossRef]
- Du, T.; Zhou, T. On the fractional double integral inclusion relations having exponential kernels via interval-valued coordinated convex mappings. Chaos Solitons Fractals 2022, 156, 111846. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Zaini, H.G.; Treanță, S.; Soliman, M.S. Some new concepts related to integral operators and inequalities on coordinates in fuzzy fractional calculus. Mathematics 2022, 10, 534. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, K.K.; Mishra, S.K.; Bisht, J.; Hassan, M. Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions. Symmetry 2022, 14, 771. https://doi.org/10.3390/sym14040771
Lai KK, Mishra SK, Bisht J, Hassan M. Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions. Symmetry. 2022; 14(4):771. https://doi.org/10.3390/sym14040771
Chicago/Turabian StyleLai, Kin Keung, Shashi Kant Mishra, Jaya Bisht, and Mohd Hassan. 2022. "Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions" Symmetry 14, no. 4: 771. https://doi.org/10.3390/sym14040771
APA StyleLai, K. K., Mishra, S. K., Bisht, J., & Hassan, M. (2022). Hermite–Hadamard Type Inclusions for Interval-Valued Coordinated Preinvex Functions. Symmetry, 14(4), 771. https://doi.org/10.3390/sym14040771