Hyperbolicity of First Order Quasi-Linear Equations
Abstract
:1. Introduction
2. Hyperbolic Systems of First Order Equations
3. Coincidence of Hyperbolicity Definitions
4. Hyperbolicity of Diagonizable Matrices
5. The Case n = 2
6. Investigation of the Equation for the Matrix
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rozhdestvenskii, B.L.; Yanenko, N.N. Systems of Quasilinear Equations and Their Applications to Gas Dynamics; AMS: Providence, RI, USA, 1983. [Google Scholar]
- Lax, P.D. Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1973. [Google Scholar]
- Jeffrey, A. Quasilinear Hyperbolic System and Waves; Pitman: London, UK, 1976. [Google Scholar]
- Majda, A. The existence of multi-dimensional shock fronts. In Memoirs of the American Mathematical Society; AMS: Providence, RI, USA, 1983; Volume 43, p. 281. [Google Scholar]
- Rykov, V.V.; Filimonov, A.M. Hyperbolic systems with multiple characteristic and applications. Upr. Bol’Shimi Sist. 2020, 85, 72–86. [Google Scholar] [CrossRef]
- Rozhdestvenskii, B.L. Discontinuous solutions of hyperbolic systems of quasi-linear equations. Russ. Math. Surv. 1960, 15, 55–111. [Google Scholar] [CrossRef]
- Palis, J.L.; Takens, F. Hyperbolicity and Sensitive-Chaotic Dynamics at Homoclinic Bifurcations; Cambridge University Press: Cambidge, UK, 1993. [Google Scholar]
- Araujo, V.; Viana, M. Hyperbolic dynamical systems. arXiv 2008, arXiv:0804.3192v1. [Google Scholar]
- Kulikovskii, A.G.; Slobodkina, F.A. Equilibrium of arbitrary steady flows at the transonic points. Appl. Math. Mech. 1968, 31, 593–602. [Google Scholar] [CrossRef]
- Kulikovskii, A.G.; Pogorelov, N.V.; Semenov, A.Y. Mathematical Aspects of Numerical Solution of Hyperbolic Systems; Chapman and Hall/CRC: New York, NY, USA, 2001. [Google Scholar]
- Virchenko, Y.P.; Subbotin, A.V. The class of evolutionary ferrodynamic equations. Math. Methods Appl. Sci. 2021, 44, 11913–11922. [Google Scholar] [CrossRef]
- Virchenko, Y.P.; Novosel’tseva, A.E. Class of hyperbolic first order quasi-linear covariant equations of divergent type. In Itogi Nauki. Modern Mathmatics. Thematic Reviews; Gamreklidze, R.V., Ed.; VINITI: Moscow, Russia, 2020; pp. 19–30. (In Russian) [Google Scholar]
- Virchenko, Y.P.; Pleskanev, A.A. Hyperbolic spherically symmetric equation of the first order of divergent type for wector field. Belgorod State Univ. Sci. Bull. Math. Phys. 2019, 51, 280–286. (In Russian) [Google Scholar]
- Friedrichs, K. Nonlinear hyperbolic differential equations for functions of two independent variables. Am. J. Math. 1948, 70, 555–589. [Google Scholar] [CrossRef]
- Gantmacher, F.R. The Theory of Matrices; Springer: Chelsea, NY, USA, 1959. [Google Scholar]
- Roger, A.H.; Charles, R.J. Topics in Matrix Analysis; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasilyev, V.; Virchenko, Y. Hyperbolicity of First Order Quasi-Linear Equations. Symmetry 2022, 14, 1024. https://doi.org/10.3390/sym14051024
Vasilyev V, Virchenko Y. Hyperbolicity of First Order Quasi-Linear Equations. Symmetry. 2022; 14(5):1024. https://doi.org/10.3390/sym14051024
Chicago/Turabian StyleVasilyev, Vladimir, and Yuri Virchenko. 2022. "Hyperbolicity of First Order Quasi-Linear Equations" Symmetry 14, no. 5: 1024. https://doi.org/10.3390/sym14051024
APA StyleVasilyev, V., & Virchenko, Y. (2022). Hyperbolicity of First Order Quasi-Linear Equations. Symmetry, 14(5), 1024. https://doi.org/10.3390/sym14051024