Robust Optimum Life-Testing Plans under Progressive Type-I Interval Censoring Schemes with Cost Constraint
Abstract
:1. Introduction
2. Preliminaries
3. Robust PIC-I Test Plan
3.1. PIC-I Test Plan
3.2. D- and c-Optimal Design Criteria
3.3. Bayesian Compound Design Criterion
3.4. Minimax Compound PIC-I Test Plan
3.5. Cost Constraint
4. Algorithms
4.1. Mixed-Integer Nonlinear Optimization Algorithm
Algorithm 1 MNO Algorithm. |
|
4.2. Particle Swarm Optimization Algorithm
5. Numerical Example
5.1. Locally Optimal PIC-I Test Plans
5.2. Bayesian Optimal PIC-I Test Plans
5.3. Influence of the Cost Parameters
5.4. Optimal General PIC-I Test Plans
Algorithm 2 PSO Algorithm. |
|
6. A Real Life Example
7. Conclusions and Discussions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Birkhauser: Basel, Switzerland, 2000. [Google Scholar]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring; Birkhauser: New York, NY, USA, 2014. [Google Scholar]
- Balakrishnan, N. Progressive censoring methodology: An appraisal. Test 2007, 16, 211–259. [Google Scholar] [CrossRef]
- Aggarwala, R. Progressive interval censoring: Some mathematical results with applications to inference. Commun. Stat. Theory Methods 2001, 30, 1921–1935. [Google Scholar] [CrossRef]
- Xiang, L.; Tse, S.K. Maximum likelihood estimation in survival studies under progressive interval censoring with random removals. Biopharm. Stat. 2005, 15, 981–991. [Google Scholar] [CrossRef]
- Ng, H.K.T.; Wang, Z. Statistical estimation for the parameters of Weibull distribution based on progressively type I interval censored sample. J. Stat. Comput. Simul. 2009, 79, 145–159. [Google Scholar] [CrossRef]
- Chen, D.G.; Lio, Y.L. Parameter estimations for generalized exponential distribution under progressive type I interval censoring. Comput. Stat. Data. Anal. 2010, 54, 1581–1591. [Google Scholar] [CrossRef]
- Lin, Y.J.; Lio, Y.L. Bayesian inference under progressive type I interval censoring. J. Appl. Stat. 2012, 39, 1811–1824. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, Y.M. Estimating the parameters of an inverse Weibull distribution under progressive type I interval censoring. Stat. Pap. 2016, 59, 21–56. [Google Scholar] [CrossRef]
- Lodhi, C.; Tripathi, Y.M. Inference on a progressive type I interval-censored truncated normal distribution. J. Appl. Stat. 2020, 47, 1402–1422. [Google Scholar] [CrossRef]
- Budhiraja, S.; Pradhan, B. Point and interval estimation under progressive type-I interval censoring with random removal. Stat. Pap. 2020, 61, 445–477. [Google Scholar] [CrossRef]
- Wu, S.F.; Chang, W.T. The evaluation on the process capability index CL for exponentiated Frech—Et lifetime product under progressive type I interval censoring. Symmetry 2021, 13, 1032. [Google Scholar] [CrossRef]
- Alotaibi, R.; Rezk, H.; Dey, S.; Okasha, H. Bayesian estimation for Dagum distribution based on progressive type I interval censoring. PLoS ONE 2021, 16, e0252556. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.J.; Chang, C.T.; Liao, K.J.; Huang, S.R. Planning of progressive group-censoring life tests with cost considerations. J. Appl. Stat. 2008, 35, 1293–1304. [Google Scholar] [CrossRef]
- Lin, C.T.; Wu, S.J.; Balakrishnan, N. Planning life tests with progressively type-I interval censored data from the lognormal distribution. J. Stat. Plan. Infer. 2009, 139, 54–61. [Google Scholar] [CrossRef]
- Lin, C.T.; Balakrishnan, N.; Wu, S.J. Planning life tests based on progressively type-I grouped censored data from the Weibull distribution. Comm. Statist. Simul. Comput. 2011, 40, 574–595. [Google Scholar] [CrossRef]
- Roy, S.; Pradhan, B. Bayesian optimum life testing plans under progressive type I interval censoring scheme. Quality Reliab. Eng. Int. 2017, 33, 2727–2737. [Google Scholar] [CrossRef]
- Budhiraja, S.; Pradhan, B. Optimum reliability acceptance sampling plans under progressive type-I interval censoring with random removal using a cost model. J. Appl. Stat. 2019, 46, 1492–1517. [Google Scholar] [CrossRef]
- Roy, S.; Pradhan, B. Bayesian C-optimal life testing plans under progressive type-I interval censoring scheme. Appl. Math. Model 2019, 70, 299–314. [Google Scholar] [CrossRef]
- Wu, S.F.; Liu, T.H.; Lai, Y.H.; Chang, W.T. A study on the experimental design for the lifetime performance index of rayleigh lifetime distribution under progressive type I interval censoring. Mathematics 2022, 10, 517. [Google Scholar] [CrossRef]
- Chaloner, K.; Verdinelli, I. Bayesian experimental design: A review. Statist. Sci. 1995, 10, 273–304. [Google Scholar] [CrossRef]
- Atkinson, A.C.; Donev, A.N.; Tobias, R.D. Optimum Experimental Designs with SAS; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Yue, R.X.; Zhou, X.D. Robust integer-valued designs for linear random intercept models. Commun. Stat. Theory Methods 2018, 47, 4338–4354. [Google Scholar] [CrossRef]
- Pan, R.; Yang, T. Design and evaluation of accelerated life testing plans with dual objectives. J. Stat. Comput. Simul. 2014, 46, 114–126. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Saha, B.N.; Farías, G.G.; Balakrishnan, N. Multi-criteria-based optimal life-testing plans under hybrid censoring scheme. TEST 2020, 29, 430–453. [Google Scholar] [CrossRef]
- Kundu, D. Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring. Technometrics 2008, 50, 144–154. [Google Scholar] [CrossRef]
- Chernoff, H. Locally optimum designs for estimating parameters. Ann. Math. Statist. 1953, 24, 586–602. [Google Scholar] [CrossRef]
- Cook, R.D.; Wong, W.K. On the equivalence of constrained and compound designs. J. Am. Statist. Assoc. 1994, 89, 687–692. [Google Scholar] [CrossRef]
- Foo, L.K.; Duffull, S. Methods of robust design of nonlinear models with an application to pharmacokinetics. J. Biopharm. Stat. 2010, 20, 886–902. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. New optimizer using particle swarm theory. In Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Poli, R.; Kennedy, J.; Blackwell, T. Particle swarm optimization an overview. Swarm. Intell. 2007, 1, 33–57. [Google Scholar] [CrossRef]
- Ruidas, S.; Seikh, M.R.; Nayak, P.K. A production inventory model with interval-valued carbon emission parameters under price-sensitive demand. Comput. Ind. Eng. 2021, 154, 107154. [Google Scholar] [CrossRef]
- Ruidas, S.; Seikh, M.R.; Nayak, P.K. Application of particle swarm optimization technique in an interval-valued EPQ model. In Meta-Heuristic Optimization Techniques: Applications in Engineering; Kumar, A., Pant, S., Ram, M., Yadav, O., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2022; pp. 51–78. [Google Scholar]
- Chen, R.B.; Chen, P.Y.; Wong, W.K. Standardized maximin D optimal designs for pharmacological models via particle swarm optimization techniques. Chemom. Intell. Lab. Syst. 2018, 169, 79–86. [Google Scholar]
- Zhou, X.D.; Wang, Y.J.; Yue, R.X. Robust population designs for longitudinal linear regression model with a random intercept. Comput. Stat. 2018, 33, 903–931. [Google Scholar] [CrossRef]
- Liu, X.; Yue, R.X.; Zhang, Z.Z.; Wong, K.W. G-optimal designs for hierarchical linear models: An equivalence theorem and a nature-inspired meta-heuristic algorithm. Soft Comput. 2021, 25, 13549–13565. [Google Scholar] [CrossRef] [PubMed]
- Carbone, P.P.; Kellerhouse, L.E.; Gehan, E.A. Plasmacytic myeloma: A study of the relationship of survival to various clinical manifestations and anomalous protein type in 112 patients. Am. J. Med. 1967, 42, 937–948. [Google Scholar] [CrossRef]
- Chen, P.; Ye, Z.S. Approximate Statistical Limits for a Gamma Distribution. J. Qual. Technol. 2017, 49, 64–77. [Google Scholar] [CrossRef]
- Chen, P.; Ye, Z.S. Estimation of Field Reliability Based on Aggregate Lifetime Data. Technometrics 2017, 59, 115–125. [Google Scholar] [CrossRef]
- Xu, A.; Zhou, S.; Tang, Y. A unified model for system reliability evaluation under dynamic operating conditions. IEEE Trans. Reliab. 2020, 70, 65–72. [Google Scholar] [CrossRef]
- Luo, C.; Shen, L.; Xu, A. Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. Reliab. Eng. Syst. Saf. 2022, 218, 108136. [Google Scholar] [CrossRef]
- Jäntschi, L. A test detecting the outliers for continuous distributions based on the cumulative distribution function of the data being tested. Symmetry 2019, 11, 835. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.J.; Pan, R.; del Castillo, E.; Xie, M. An adaptive two-stage Bayesian model averaging approach to planning and analyzing accelerated life tests under model uncertainty. J. Qual. Technol. 2019, 51, 181–197. [Google Scholar] [CrossRef]
- Wu, S.J.; Huang, S.R. Optimal progressive interval censoring plan under accelerated life test with limited budget. J. Stat. Comput. Simul. 2019, 89, 3241–3257. [Google Scholar] [CrossRef]
- Hu, J.; Chen, P. Predictive maintenance of systems subject to hard failure based on proportional hazards model. Reliab. Eng. Syst. Saf. 2020, 196, 106707. [Google Scholar] [CrossRef]
p | D-Optimality | c-Optimality | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 74 | 6 | 2.0121 | 12.0724 | −6.1284 | 0.9079 | 74 | 4 | 1.9860 | 7.9439 | −4.0028 | 0.9975 | ||
0.1 | 74 | 9 | 2.1483 | 19.3346 | −5.1970 | 0.9272 | 74 | 6 | 1.7824 | 10.6944 | −3.1115 | 0.9882 | ||
0.1 | 74 | 6 | 2.6201 | 15.7203 | −6.1268 | 0.9076 | 74 | 4 | 2.5874 | 10.3497 | −4.0018 | 0.9970 | ||
0.1 | 73 | 9 | 2.7913 | 25.1220 | −5.1945 | 0.8753 | 74 | 5 | 2.4145 | 12.0724 | −3.1102 | 0.9873 | ||
0.3 | 74 | 4 | 3.0280 | 12.1120 | −5.8608 | 0.9886 | 74 | 3 | 3.0755 | 9.2264 | −3.8758 | 0.9981 | ||
0.3 | 74 | 6 | 3.1140 | 18.6839 | −4.9051 | 0.9493 | 74 | 4 | 2.6947 | 10.7789 | −3.0115 | 0.9835 | ||
0.3 | 74 | 4 | 3.9453 | 15.7813 | −5.8592 | 0.9888 | 74 | 3 | 4.0074 | 12.0222 | −3.8746 | 0.9977 | ||
0.3 | 74 | 6 | 4.0537 | 24.3223 | −4.9027 | 0.9499 | 74 | 4 | 3.5113 | 14.0454 | −3.0101 | 0.9828 | ||
0.1 | 74 | 6 | 1.4656 | 8.7933 | −6.7534 | 0.9369 | 74 | 4 | 1.5798 | 6.3191 | −4.6350 | 0.9969 | ||
0.1 | 73 | 11 | 1.8835 | 20.7189 | −4.8260 | 0.8784 | 74 | 6 | 1.4889 | 8.9334 | −2.7718 | 0.9797 | ||
0.1 | 74 | 6 | 2.4859 | 14.9152 | −6.7508 | 0.9361 | 74 | 4 | 2.6829 | 10.7315 | −4.6332 | 0.9961 | ||
0.1 | 73 | 10 | 3.2318 | 32.3185 | −4.8203 | 0.8794 | 74 | 6 | 2.5223 | 15.1340 | −2.7691 | 0.9770 | ||
0.3 | 74 | 3 | 3.1648 | 9.4943 | −6.4923 | 0.3398 | 74 | 2 | 4.2754 | 8.5508 | −4.4716 | 0.9275 | ||
0.3 | 74 | 7 | 2.7790 | 19.4529 | −4.5149 | 0.9059 | 74 | 4 | 2.2228 | 8.8912 | −2.6749 | 0.9630 | ||
0.3 | 74 | 2 | 5.4124 | 10.8248 | −6.4900 | 0.3398 | 74 | 2 | 7.2750 | 14.5501 | −4.4691 | 0.9287 | ||
0.3 | 73 | 6 | 4.7729 | 28.6373 | −4.5095 | 0.9078 | 74 | 4 | 3.7753 | 15.1014 | −2.6723 | 0.9595 |
i | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
2 | 4 | 6 | 2 | 1 | |
0 | 2 | 1 | 1 | 1 | |
0 | 0.2 | 0.3 | 0.4 | 1 |
p | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.0 | 74 | 5 | 1.7235 | 8.6174 | −3.5486 | 0.9359 | 1.0000 | 74 | 4 | 1.5798 | 6.3191 | −4.6350 | 0.9369 | 1.0000 |
0.1 | 74 | 7 | 1.7453 | 12.2173 | −3.7574 | 0.9961 | 0.9976 | 74 | 5 | 1.5582 | 7.7908 | −4.8458 | 0.9981 | 0.9990 | |
0.2 | 74 | 7 | 1.7762 | 12.4334 | −3.9686 | 0.9974 | 0.9973 | 74 | 5 | 1.5587 | 7.7933 | −5.0575 | 0.9981 | 0.9990 | |
0.3 | 74 | 7 | 1.8025 | 12.6172 | −4.1800 | 0.9983 | 0.9971 | 74 | 5 | 1.5590 | 7.7951 | −5.2693 | 0.9981 | 0.9990 | |
0.4 | 74 | 7 | 1.8254 | 12.7781 | −4.3915 | 0.9989 | 0.9967 | 74 | 5 | 1.5593 | 7.7964 | −5.4810 | 0.9981 | 0.9990 | |
0.5 | 74 | 7 | 1.8460 | 12.9219 | −4.6031 | 0.9993 | 0.9964 | 74 | 6 | 1.5021 | 9.0127 | −5.6929 | 0.9998 | 0.9975 | |
0.6 | 74 | 7 | 1.8646 | 13.0523 | −4.8148 | 0.9996 | 0.9960 | 74 | 6 | 1.4936 | 8.9619 | −5.9049 | 0.9999 | 0.9974 | |
0.7 | 74 | 7 | 1.8817 | 13.1720 | −5.0265 | 0.9998 | 0.9957 | 74 | 6 | 1.4858 | 8.9146 | −6.1170 | 0.9999 | 0.9973 | |
0.8 | 74 | 7 | 1.8975 | 13.2828 | −5.2383 | 0.9999 | 0.9953 | 74 | 6 | 1.4785 | 8.8709 | −6.3291 | 1.0000 | 0.9972 | |
0.9 | 74 | 7 | 1.9123 | 13.3858 | −5.4501 | 1.0000 | 0.9949 | 74 | 6 | 1.4717 | 8.8305 | −6.5413 | 1.0000 | 0.9970 | |
1.0 | 74 | 7 | 1.9261 | 13.4827 | −5.6620 | 1.0000 | 0.9946 | 74 | 6 | 1.4656 | 8.7935 | −6.7534 | 1.0000 | 0.9969 | |
0.3 | 0.0 | 74 | 3 | 2.6524 | 7.9573 | −3.4414 | 0.9312 | 1.0000 | 74 | 2 | 4.2754 | 8.5508 | −4.4716 | 0.3398 | 1.0000 |
0.1 | 74 | 4 | 2.6559 | 10.6235 | −3.6342 | 0.9932 | 0.9986 | 74 | 3 | 2.5149 | 7.5447 | −4.6388 | 0.9246 | 0.9704 | |
0.2 | 74 | 4 | 2.6845 | 10.7380 | −3.8285 | 0.9945 | 0.9984 | 74 | 3 | 2.4851 | 7.4553 | −4.8361 | 0.9262 | 0.9701 | |
0.3 | 74 | 5 | 2.6693 | 13.3467 | −4.0233 | 0.9992 | 0.9969 | 74 | 3 | 2.4346 | 7.3038 | −5.0338 | 0.9295 | 0.9689 | |
0.4 | 74 | 5 | 2.6839 | 13.4197 | −4.2183 | 0.9994 | 0.9968 | 74 | 3 | 3.0484 | 9.1453 | −5.2371 | 0.9920 | 0.9361 | |
0.5 | 74 | 5 | 2.6982 | 13.4909 | −4.4134 | 0.9996 | 0.9967 | 74 | 3 | 3.0973 | 9.2918 | −5.4455 | 0.9972 | 0.9323 | |
0.6 | 74 | 5 | 2.7121 | 13.5604 | −4.6084 | 0.9998 | 0.9965 | 74 | 3 | 3.1230 | 9.3690 | −5.6545 | 0.9989 | 0.9304 | |
0.7 | 74 | 5 | 2.7257 | 13.6285 | −4.8036 | 0.9999 | 0.9963 | 74 | 3 | 3.1392 | 9.4175 | −5.8638 | 0.9996 | 0.9292 | |
0.8 | 74 | 5 | 2.7390 | 13.6950 | −4.9987 | 0.9999 | 0.9960 | 74 | 3 | 3.1503 | 9.4510 | −6.0732 | 0.9999 | 0.9284 | |
0.9 | 74 | 5 | 2.7520 | 13.7600 | −5.1939 | 1.0000 | 0.9958 | 74 | 3 | 3.1585 | 9.4755 | −6.2827 | 1.0000 | 0.9279 | |
1.0 | 74 | 5 | 2.7648 | 13.8238 | −5.3891 | 1.0000 | 0.9955 | 74 | 3 | 3.1648 | 9.4943 | −6.4923 | 1.0000 | 0.9275 |
p | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | 0.0 | 74 | 5 | 2.1731 | 10.8654 | −3.5759 | 0.9360 | 1.0000 | 74 | 6 | 2.0791 | 12.4747 | −3.6117 | 0.9673 | 1.0000 |
0.1 | 74 | 7 | 2.1752 | 15.2266 | −3.7842 | 0.9942 | 0.9977 | 74 | 7 | 2.1093 | 14.7654 | −3.8200 | 0.9894 | 0.9989 | |
0.2 | 74 | 7 | 2.2187 | 15.5306 | −3.9950 | 0.9959 | 0.9974 | 74 | 8 | 2.1187 | 16.9493 | −4.0297 | 0.9966 | 0.9976 | |
0.3 | 74 | 7 | 2.2559 | 15.7910 | −4.2059 | 0.9970 | 0.9970 | 74 | 8 | 2.1503 | 17.2027 | −4.2399 | 0.9975 | 0.9973 | |
0.4 | 74 | 7 | 2.2885 | 16.0192 | −4.4169 | 0.9978 | 0.9966 | 74 | 8 | 2.1789 | 17.4312 | −4.4503 | 0.9981 | 0.9969 | |
0.5 | 74 | 8 | 2.2654 | 18.1234 | −4.6283 | 0.9994 | 0.9955 | 74 | 8 | 2.2048 | 17.6381 | −4.6607 | 0.9986 | 0.9965 | |
0.6 | 74 | 8 | 2.2880 | 18.3039 | −4.8397 | 0.9996 | 0.9952 | 74 | 9 | 2.1921 | 19.7287 | −4.8714 | 0.9996 | 0.9953 | |
0.7 | 74 | 8 | 2.3091 | 18.4726 | −5.0511 | 0.9998 | 0.9949 | 74 | 9 | 2.2116 | 19.9047 | −5.0821 | 0.9998 | 0.9950 | |
0.8 | 74 | 8 | 2.3289 | 18.6311 | −5.2626 | 0.9999 | 0.9945 | 74 | 9 | 2.2299 | 20.0691 | −5.2929 | 0.9999 | 0.9947 | |
0.9 | 74 | 8 | 2.3476 | 18.7806 | −5.4742 | 1.0000 | 0.9942 | 74 | 9 | 2.2470 | 20.2229 | −5.5038 | 1.0000 | 0.9944 | |
1.0 | 74 | 8 | 2.3653 | 18.9221 | −5.6858 | 1.0000 | 0.9938 | 74 | 9 | 2.2630 | 20.3672 | −5.7146 | 1.0000 | 0.9941 | |
0.3 | 0.0 | 74 | 3 | 3.3461 | 10.0384 | −3.4621 | 0.9323 | 1.0000 | 74 | 4 | 3.1924 | 12.7695 | −3.4840 | 0.9817 | 1.0000 |
0.1 | 74 | 4 | 3.3257 | 13.3029 | −3.6553 | 0.9906 | 0.9994 | 74 | 5 | 3.2009 | 16.0044 | −3.6769 | 0.9960 | 0.9987 | |
0.2 | 74 | 5 | 3.3230 | 16.6148 | −3.8494 | 0.9986 | 0.9976 | 74 | 5 | 3.2300 | 16.1501 | −3.8712 | 0.9969 | 0.9986 | |
0.3 | 74 | 5 | 3.3438 | 16.7190 | −4.0442 | 0.9990 | 0.9974 | 74 | 5 | 3.2584 | 16.2922 | −4.0656 | 0.9976 | 0.9983 | |
0.4 | 74 | 5 | 3.3641 | 16.8204 | −4.2392 | 0.9993 | 0.9973 | 74 | 5 | 3.2860 | 16.4299 | −4.2601 | 0.9982 | 0.9980 | |
0.5 | 74 | 5 | 3.3838 | 16.9191 | −4.4341 | 0.9995 | 0.9971 | 74 | 5 | 3.3126 | 16.5628 | −4.4547 | 0.9987 | 0.9976 | |
0.6 | 74 | 5 | 3.4031 | 17.0154 | −4.6291 | 0.9997 | 0.9969 | 74 | 5 | 3.3381 | 16.6903 | −4.6494 | 0.9990 | 0.9972 | |
0.7 | 74 | 5 | 3.4219 | 17.1094 | −4.8242 | 0.9998 | 0.9966 | 74 | 5 | 3.3624 | 16.8121 | −4.8441 | 0.9993 | 0.9967 | |
0.8 | 74 | 5 | 3.4403 | 17.2013 | −5.0193 | 0.9999 | 0.9963 | 74 | 6 | 3.3533 | 20.1196 | −5.0391 | 0.9999 | 0.9950 | |
0.9 | 74 | 5 | 3.4582 | 17.2911 | −5.2144 | 1.0000 | 0.9960 | 74 | 6 | 3.3739 | 20.2431 | −5.2341 | 1.0000 | 0.9946 | |
1.0 | 74 | 5 | 3.4758 | 17.3789 | −5.4096 | 1.0000 | 0.9957 | 74 | 6 | 3.3936 | 20.3614 | −5.4292 | 1.0000 | 0.9941 |
C | N | k | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 4000 | 80 | 3 | 2.5 | 49 | 3 | 3.3415 | 10.0244 | −3.0538 | 0.9924 | 0.9962 |
6000 | 74 | 3 | 3.3461 | 10.0384 | −3.4621 | 0.9917 | 0.9963 | ||||
8000 | 99 | 3 | 3.3485 | 10.0454 | −3.7512 | 0.9913 | 0.9963 | ||||
6000 | 70 | 3 | 2.5 | 85 | 3 | 3.3461 | 10.0384 | −3.5956 | 0.9917 | 0.9963 | |
80 | 74 | 3 | 3.3461 | 10.0384 | −3.4621 | 0.9917 | 0.9963 | ||||
90 | 66 | 3 | 3.3461 | 10.0384 | −3.3443 | 0.9917 | 0.9963 | ||||
6000 | 80 | 2 | 2.5 | 74 | 3 | 3.3461 | 10.0384 | −3.4626 | 0.9915 | 0.9963 | |
3 | 74 | 3 | 3.3461 | 10.0384 | −3.4621 | 0.9917 | 0.9963 | ||||
5 | 74 | 3 | 3.3461 | 10.0384 | −3.4611 | 0.9920 | 0.9963 | ||||
6000 | 80 | 3 | 1.0 | 74 | 4 | 3.2950 | 13.1801 | −3.4649 | 0.9956 | 0.9966 | |
2.5 | 74 | 3 | 3.3461 | 10.0384 | −3.4621 | 0.9917 | 0.9963 | ||||
4.0 | 74 | 3 | 3.3405 | 10.0216 | −3.4596 | 0.9923 | 0.9962 | ||||
0.5 | 4000 | 80 | 3 | 2.5 | 49 | 5 | 3.3742 | 16.8709 | −4.0238 | 0.9892 | 0.9896 |
6000 | 74 | 5 | 3.3838 | 16.9191 | −4.4341 | 0.9900 | 0.9914 | ||||
8000 | 99 | 5 | 3.3886 | 16.9432 | −4.7242 | 0.9904 | 0.9923 | ||||
6000 | 70 | 3 | 2.5 | 84 | 5 | 3.3838 | 16.9191 | −4.5677 | 0.9900 | 0.9914 | |
80 | 74 | 5 | 3.3838 | 16.9191 | −4.4341 | 0.9900 | 0.9914 | ||||
90 | 66 | 5 | 3.3838 | 16.9191 | −4.3164 | 0.9900 | 0.9914 | ||||
6000 | 80 | 2 | 2.5 | 74 | 5 | 3.3838 | 16.9192 | −4.4350 | 0.9902 | 0.9917 | |
3 | 74 | 5 | 3.3838 | 16.9191 | −4.4341 | 0.9900 | 0.9914 | ||||
5 | 74 | 5 | 3.3838 | 16.9190 | −4.4325 | 0.9897 | 0.9907 | ||||
6000 | 80 | 3 | 1.0 | 74 | 5 | 3.3953 | 16.9767 | −4.4384 | 0.9907 | 0.9930 | |
2.5 | 74 | 5 | 3.3838 | 16.9191 | −4.4341 | 0.9900 | 0.9914 | ||||
4.0 | 73 | 5 | 3.3723 | 16.8615 | −4.4299 | 0.9893 | 0.9898 | ||||
1 | 4000 | 80 | 3 | 2.5 | 49 | 5 | 3.4664 | 17.3321 | −4.9992 | 0.9847 | 0.9864 |
6000 | 74 | 5 | 3.4758 | 17.3789 | −5.4096 | 0.9856 | 0.9883 | ||||
8000 | 99 | 5 | 3.4805 | 17.4023 | −5.6997 | 0.9860 | 0.9892 | ||||
6000 | 70 | 3 | 2.5 | 84 | 5 | 3.4758 | 17.3789 | −5.5431 | 0.9856 | 0.9883 | |
80 | 74 | 5 | 3.4758 | 17.3789 | −5.4096 | 0.9856 | 0.9883 | ||||
90 | 66 | 5 | 3.4758 | 17.3789 | −5.2918 | 0.9856 | 0.9883 | ||||
6000 | 80 | 2 | 2.5 | 74 | 5 | 3.4758 | 17.3790 | −5.4104 | 0.9858 | 0.9886 | |
3 | 74 | 5 | 3.4758 | 17.3789 | −5.4096 | 0.9856 | 0.9883 | ||||
5 | 74 | 5 | 3.4758 | 17.3788 | −5.4079 | 0.9853 | 0.9876 | ||||
6000 | 80 | 3 | 1.0 | 74 | 5 | 3.4870 | 17.4348 | −5.4140 | 0.9863 | 0.9899 | |
2.5 | 74 | 5 | 3.4758 | 17.3789 | −5.4096 | 0.9856 | 0.9883 | ||||
4.0 | 73 | 5 | 3.4646 | 17.3229 | −5.4052 | 0.9849 | 0.9867 |
k | N | Inspection Times | ||
---|---|---|---|---|
2 | 74 | (2.612, 8.067) | −5.3216 | |
3 | 74 | (2.547, 7.214, 9.929) | −5.4120 | |
D-opt | 4 | 74 | (2.521, 6.961, 9.235, 11.333) | −5.4308 |
5 | 74 | (2.514, 6.896, 9.066, 10.767, 12.455) | −5.4344 | |
6 | 74 | (2.512, 6.881, 9.029, 10.644, 12.002, 13.207) | −5.4346 | |
7 | 74 | (2.512, 6.879, 9.025, 10.629, 11.948, 12.999, 13.434) | −5.4341 | |
2 | 74 | (3.154, 5.554) | −3.4366 | |
c-opt | 3 | 74 | (2.970, 4.886, 6.724) | −3.4581 |
4 | 74 | (2.934, 4.761, 6.216, 7.603) | −3.4610 | |
5 | 74 | (2.928, 4.741, 6.140, 7.252, 8.083) | −3.4609 |
k | N | Inspection Times | |||||
---|---|---|---|---|---|---|---|
0 | 2 | 74 | (3.911, 7.256) | −3.4467 | 0.8388 | 0.8882 | |
3 | 74 | (3.700, 6.219, 8.875) | −3.4764 | 0.8693 | 0.9238 | ||
4 | 74 | (3.658, 6.020, 8.051, 10.269) | −3.4811 | 0.8791 | 0.9314 | ||
5 | 74 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.4813 | 0.8818 | 0.9329 | ||
6 | 74 | (3.650, 5.982, 7.892, 9.595, 11.047, 11.312) | −3.4808 | 0.8816 | 0.9329 | ||
0.5 | 2 | 74 | (3.811, 9.328) | −4.3429 | 0.8983 | 0.8882 | |
3 | 74 | (3.540, 7.755, 11.515) | −4.4152 | 0.9313 | 0.9088 | ||
4 | 74 | (3.453, 7.255, 10.413, 13.462) | −4.4335 | 0.9383 | 0.9218 | ||
5 | 74 | (3.430, 7.122, 10.123, 12.563, 15.151) | −4.4376 | 0.9407 | 0.9256 | ||
6 | 74 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) | −4.4378 | 0.9414 | 0.9263 | ||
7 | 74 | (3.423, 7.087, 10.046, 12.334, 14.342, 16.028, 16.511) | −4.4373 | 0.9415 | 0.9263 | ||
1 | 2 | 74 | (3.304, 9.810) | −5.3200 | 0.8949 | 0.8700 | |
3 | 74 | (3.227, 8.798, 12.277) | −5.4196 | 0.9254 | 0.8763 | ||
4 | 74 | (3.193, 8.480, 11.343, 14.299) | −5.4422 | 0.9367 | 0.8813 | ||
5 | 74 | (3.183, 8.389, 11.098, 13.437, 16.036) | −5.4472 | 0.9405 | 0.8829 | ||
6 | 74 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) | −5.4476 | 0.9414 | 0.8831 | ||
7 | 74 | (3.180, 8.363, 11.030, 13.209, 15.188, 16.899, 17.583) | −5.4472 | 0.9415 | 0.8831 | ||
0 | 2 | 74 | (3.835, 7.571) | −3.4431 | 0.8794 | 0.8994 | |
3 | 74 | (3.590, 6.233, 9.451) | −3.4909 | 0.8914 | 0.9388 | ||
4 | 74 | (3.538, 5.963, 8.319, 11.210) | −3.4998 | 0.8963 | 0.9472 | ||
5 | 74 | (3.527, 5.902, 8.074, 10.268, 12.605) | −3.5010 | 0.8986 | 0.9490 | ||
6 | 74 | (3.525 5.892 8.035 10.126 12.055 13.172) | −3.5006 | 0.8993 | 0.9492 | ||
0.5 | 2 | 74 | (3.713, 8.514) | −4.3305 | 0.9316 | 0.9037 | |
3 | 74 | (3.469, 7.312, 11.248) | −4.4273 | 0.9320 | 0.9233 | ||
4 | 74 | (3.389, 6.910, 10.013, 13.540) | −4.4508 | 0.9390 | 0.9341 | ||
5 | 74 | (3.364, 6.784, 9.666, 12.385, 15.614) | −4.4566 | 0.9424 | 0.9377 | ||
6 | 74 | (3.357, 6.750, 9.572, 12.096, 14.599, 17.120) | −4.4573 | 0.9435 | 0.9384 | ||
7 | 74 | (3.356,6.745,9.559,12.055,14.459,16.629,17.601) | −4.4569 | 0.9436 | 0.9384 | ||
1 | 2 | 74 | (3.235, 8.905) | −5.2680 | 0.9631 | 0.8940 | |
3 | 74 | (3.157, 7.951, 11.858) | −5.4075 | 0.9569 | 0.9023 | ||
4 | 74 | (3.120, 7.644, 10.724, 14.294) | −5.4409 | 0.9634 | 0.9082 | ||
5 | 74 | (3.106, 7.544, 10.403, 13.144, 16.511) | −5.4492 | 0.9667 | 0.9103 | ||
6 | 74 | (3.101, 7.515, 10.315, 12.851, 15.443, 18.249) | −5.4506 | 0.9677 | 0.9106 | ||
7 | 74 | (3.101, 7.510, 10.298, 12.796, 15.253, 17.559, 19.001) | −5.4503 | 0.9679 | 0.9105 |
C | N | Inspection Times | |||||
---|---|---|---|---|---|---|---|
4000 | 80 | 3 | 2.5 | 49 | (3.659, 6.020, 8.035, 10.159) | −3.0725 | |
6000 | 74 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.4813 | ||||
8000 | 99 | (3.650, 5.982, 7.902, 9.658, 11.371) | −3.7708 | ||||
6000 | 70 | 3 | 2.5 | 85 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.6148 | |
80 | 74 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.4813 | ||||
0 | 90 | 66 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.3635 | |||
6000 | 80 | 2 | 2.5 | 74 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.4821 | |
3 | 74 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.4813 | ||||
5 | 74 | (3.658, 6.020, 8.051, 10.269) | −3.4798 | ||||
6000 | 80 | 3 | 1.0 | 74 | (3.649, 5.981, 7.908, 9.712, 11.677) | −3.4842 | |
2.5 | 74 | (3.650, 5.983, 7.900, 9.628, 11.190) | −3.4813 | ||||
4.0 | 74 | (3.659, 6.020, 8.032, 10.138) | −3.4785 | ||||
4000 | 80 | 3 | 2.5 | 49 | (3.428, 7.115, 10.106, 12.509, 14.948) | −4.0277 | |
6000 | 74 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) | −4.4378 | ||||
8000 | 99 | (3.425, 7.092, 10.058, 12.372, 14.478, 16.538) | −4.7280 | ||||
6000 | 70 | 3 | 2.5 | 84 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) | −4.5714 | |
80 | 74 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) | −4.4378 | ||||
0.5 | 90 | 66 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) | −4.3200 | |||
6000 | 80 | 2 | 2.5 | 74 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.277) | −4.4388 | |
3 | 74 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) | −4.4378 | ||||
5 | 74 | (3.430, 7.122, 10.123, 12.562, 15.151) | −4.4359 | ||||
6000 | 80 | 3 | 1.0 | 74 | (3.426, 7.096, 10.068, 12.403, 14.592, 16.976) | −4.4420 | |
2.5 | 74 | (3.424, 7.090, 10.053, 12.353, 14.409, 16.276) | −4.4378 | ||||
4.0 | 73 | (3.422, 7.085, 10.042, 12.316, 14.271, 15.755) | −4.4338 | ||||
4000 | 80 | 3 | 2.5 | 49 | (3.182, 8.384, 11.085, 13.392, 15.858) | −5.0371 | |
6000 | 74 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) | −5.4476 | ||||
8000 | 99 | (3.181, 8.367, 11.042, 13.250, 15.341, 17.480) | −5.7379 | ||||
6000 | 70 | 3 | 2.5 | 84 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) | −5.5812 | |
80 | 74 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) | −5.4476 | ||||
90 | 65 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) | −5.3299 | ||||
1 | 6000 | 80 | 2 | 2.5 | 74 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.241) | −5.4487 |
3 | 74 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) | −5.4476 | ||||
5 | 74 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.238) | −5.4456 | ||||
6000 | 80 | 3 | 1.0 | 74 | (3.181, 8.370, 11.049, 13.277, 15.442, 17.875) | −5.4521 | |
2.5 | 74 | (3.180, 8.366, 11.037, 13.234, 15.279, 17.240) | −5.4476 | ||||
4.0 | 73 | (3.179, 8.363, 11.028, 13.201, 15.153, 16.760) | −5.4433 |
Interval in Months | Number at Risk | Number of Withdrawals |
---|---|---|
112 | 1 | |
93 | 1 | |
76 | 3 | |
55 | 0 | |
45 | 0 | |
34 | 1 | |
25 | 2 | |
10 | 3 | |
3 | 2 | |
0 | 0 |
Design Criterion | N | |||||
---|---|---|---|---|---|---|
D-opt | - | 132 | 3.5972 | 32.3744 | −9.6813 | 0.8243 |
c-opt | - | 134 | 3.1923 | 28.7311 | −9.6071 | 0.8233 |
BcD-opt | 0.0 | 128 | 4.8029 | 43.2262 | −5.0343 | 1.0001 |
0.5 | 123 | 5.9594 | 53.6349 | −5.1176 | 1.0086 | |
1.0 | 120 | 6.7642 | 60.8781 | −5.2223 | 0.9957 | |
McD-opt | 0.0 | 128 | 4.7736 | 42.9627 | −4.8030 | 1.0061 |
0.5 | 122 | 6.2919 | 56.6271 | −4.8794 | 1.0132 | |
1.0 | 118 | 7.3139 | 65.8255 | −4.9846 | 0.9914 |
Design Criterion | N | ||||
---|---|---|---|---|---|
D-opt | - | 134 | (17.524, 19.856, 21.544, 22.897, 24.076, 25.076, 26.076, 27.076, 28.076) | −9.9818 | 0.6103 |
c-opt | - | 134 | (16.378, 18.478, 19.831, 20.831, 21.831, 22.831, 25.458, 26.458, 27.458) | −9.8213 | 0.6646 |
BcD-opt | 0.0 | 124 | (1.089, 3.549, 7.295, 11.990, 19.281, 39.281, 52.830, 52.930, 53.030) | −5.1580 | 0.8838 |
0.5 | 122 | (1.239, 4.075, 8.557, 14.657, 25.349, 42.696, 57.013, 57.113, 57.213) | −5.2252 | 0.9058 | |
1.0 | 120 | (1.568, 5.263, 11.588, 21.011, 34.291, 47.815, 60.597, 60.697, 60.797) | −5.3025 | 0.9190 | |
McD-opt | 0.0 | 122 | (0.856, 3.094, 6.782, 11.590, 19.249, 39.249, 55.940, 56.040, 56.140) | −4.9486 | 0.8698 |
0.5 | 120 | (0.981, 3.582, 8.018, 14.255, 25.322, 45.322, 62.099, 62.199, 62.299) | −5.0123 | 0.8871 | |
1.0 | 118 | (1.250, 4.668, 10.974, 20.715, 36.007, 52.237, 66.919, 67.019, 67.119) | −5.0858 | 0.8960 |
p | N | k | ||||||
---|---|---|---|---|---|---|---|---|
D-opt | 0 | - | 127 | 24 | 1.1200 | 26.8790 | −9.9947 | 0.6025 |
0.3 | - | 138 | 4 | 6.2843 | 25.1371 | −8.6852 | 2.2319 | |
c-opt | 0 | - | 129 | 21 | 1.2749 | 26.7728 | −9.8208 | 0.6649 |
0.3 | - | 137 | 3 | 9.3286 | 27.9858 | −8.8469 | 1.7608 | |
BcD-opt | 0 | 0.0 | 120 | 19 | 2.5650 | 48.7345 | −5.1274 | 0.9112 |
0.5 | 119 | 17 | 3.2444 | 55.1550 | −5.2181 | 0.9122 | ||
1.0 | 117 | 16 | 3.7316 | 59.7058 | −5.3183 | 0.9046 | ||
0.3 | 0.0 | 134 | 7 | 4.4587 | 31.2107 | −4.7950 | 1.2705 | |
0.5 | 127 | 6 | 8.2476 | 49.4854 | −4.7230 | 1.4966 | ||
1.0 | 126 | 4 | 13.1284 | 52.5135 | −4.7846 | 1.5425 | ||
McD-opt | 0 | 0.0 | 120 | 19 | 2.6290 | 49.9512 | −4.9044 | 0.9091 |
0.5 | 117 | 18 | 3.2852 | 59.1339 | −4.9892 | 0.9079 | ||
1.0 | 115 | 16 | 4.0608 | 64.9733 | −5.0872 | 0.8947 | ||
0.3 | 0.0 | 147 | 3 | 1.3227 | 3.9682 | −4.5884 | 1.2470 | |
0.5 | 127 | 6 | 8.0017 | 48.0105 | −4.4663 | 1.5315 | ||
1.0 | 125 | 4 | 14.1928 | 56.7714 | −4.5415 | 1.5441 |
p | N | |||||
---|---|---|---|---|---|---|
D-opt | 0 | - | 133 | (15.169, 17.295, 18.779, 19.956, 20.972, 21.972, 22.972, 23.972, 24.972, 25.972, 26.972) | −10.0496 | 0.5703 |
0.3 | - | 137 | (20.563, 24.384, 25.548, 26.548) | −9.6097 | 0.8854 | |
c-opt | 0 | - | 133 | (14.391, 16.419, 17.831, 18.935, 19.935, 20.935, 21.935, 22.935, 25.091, 26.091, 27.091) | −9.8711 | 0.6323 |
0.3 | - | 137 | (19.446, 21.483, 25.585, 26.585) | −9.6065 | 0.8238 | |
BcD-opt | 0 | 0.0 | 123 | (0.303, 1.086, 2.409, 4.305, 6.836, 10.150, 14.604, 21.274, 41.274, 53.615) | −5.2035 | 0.8444 |
0.5 | 121 | (0.400, 1.427, 3.154, 5.647, 9.058, 13.761, 20.764, 32.648, 45.421, 58.097) | −5.2822 | 0.8556 | ||
1.0 | 120 | (0.514, 1.826, 4.045, 7.325, 12.036, 19.010, 28.766, 39.155, 49.847, 61.535) | −5.3693 | 0.8596 | ||
0.3 | 0.0 | 128 | (4.020, 10.849, 30.849, 48.098) | −4.9285 | 1.1117 | |
0.5 | 126 | (4.899, 16.739, 36.739, 52.615) | −4.8890 | 1.2677 | ||
1.0 | 125 | (6.771, 26.771, 46.771, 56.246) | −4.9230 | 1.3431 | ||
McD-opt | 0 | 0.0 | 122 | (0.214, 0.856, 2.035, 3.832, 6.349, 9.776, 14.528, 21.800, 41.800, 56.687) | −4.9936 | 0.8315 |
0.5 | 119 | (0.275, 1.095, 2.598, 4.902, 8.192, 12.857, 19.849, 31.909, 47.622, 63.043) | −5.0677 | 0.8393 | ||
1.0 | 117 | (0.361, 1.432, 3.407, 6.500, 11.122, 18.163, 28.776, 41.060, 53.851, 67.732) | −5.1514 | 0.8391 | ||
0.3 | 0.0 | 127 | (3.524, 10.215, 30.215, 50.215) | −4.7243 | 1.0189 | |
0.5 | 124 | (5.391, 25.391, 45.391, 57.616) | −4.6739 | 1.2444 | ||
1.0 | 123 | (6.215, 26.215, 46.215, 60.490) | −4.6969 | 1.3219 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Wang, Y.; Yue, R. Robust Optimum Life-Testing Plans under Progressive Type-I Interval Censoring Schemes with Cost Constraint. Symmetry 2022, 14, 1047. https://doi.org/10.3390/sym14051047
Zhou X, Wang Y, Yue R. Robust Optimum Life-Testing Plans under Progressive Type-I Interval Censoring Schemes with Cost Constraint. Symmetry. 2022; 14(5):1047. https://doi.org/10.3390/sym14051047
Chicago/Turabian StyleZhou, Xiaodong, Yunjuan Wang, and Rongxian Yue. 2022. "Robust Optimum Life-Testing Plans under Progressive Type-I Interval Censoring Schemes with Cost Constraint" Symmetry 14, no. 5: 1047. https://doi.org/10.3390/sym14051047
APA StyleZhou, X., Wang, Y., & Yue, R. (2022). Robust Optimum Life-Testing Plans under Progressive Type-I Interval Censoring Schemes with Cost Constraint. Symmetry, 14(5), 1047. https://doi.org/10.3390/sym14051047