Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers
Abstract
:1. Introduction and Preliminaries
1.1. Telephonic Numbers:
- ;
- ;
- ;
- ;
- ;
- maps onto a region starlike with respect to 1 and symmetric with respect to the real axis.
1.2. The Analytic Functions
- 1.
- 2.
- 3.
- 4.
- 5.
2. Coefficient Estimates and Fekete–Szegö Inequality
3. Coefficient Inequalities for the Function
4. Application to Functions Defined by Certain Distributions Based on Convolution
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowla, S.; Herstein, I.N.; Moore, W.K. On recursions connected with symmetric groups I. Can. J. Math. 1951, 3, 328–334. [Google Scholar] [CrossRef]
- Knuth, D.E. The Art of Computer Programming; Addison-Wesley: Boston, MA, USA, 1973; Volume 3. [Google Scholar]
- Beissinger, J.S. Similar constructions for Young tableaux and involutions, and their applications to shiftable tableaux. Discret. Math. 1987, 67, 149–163. [Google Scholar] [CrossRef] [Green Version]
- Riordan, J. Introduction to Combinatorial Analysis; Dover: Mineola, TX, USA, 2002. [Google Scholar]
- Włoch, A.; Wołowiec-Musiał, M. On generalized telephone number, their interpretations and matrix generators. Util. Math. 2017, 10, 531–539. [Google Scholar]
- Bednarz, U.; Wolowiec-Musial, M. On a new generalization of telephone numbers. Turk. J. Math. 2019, 43, 1595–1603. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math. Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. On coeffcient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar]
- Sokół, J.; Thomas, D.K. Further results on a class starlike functions related to the Bernoulli lemniscate. Houst. J. Math. 2018, 44, 8–95. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Robertson, M.S. Certain classes of starlike functions. Mich. Math. J. 1985, 32, 135–140. [Google Scholar] [CrossRef]
- Ronning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Am. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J. Radius problem in the class *. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar] [CrossRef]
- Mohsin, M.; Malik, S.N. Upper bound of third hankel determinant for class of analytic functions related with lemniscate of bernoulli. J. Inequal. Appl. 2013, 412. [Google Scholar] [CrossRef] [Green Version]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Shi, L.; Izaz, A.; Arif, M.; Cho, N.E.; Hussain, S.; Hassan, K. A study of third hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain. Mathematics 2019, 7, 418. [Google Scholar] [CrossRef] [Green Version]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Arif, M.; Hussain, S.; Khan, H. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function. Symmetry 2019, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikeness associated with cosine hyperbolic function. Mathematics 2020, 8, 16. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Guo, D.; Liu, M.-S. On certain subclass of Bazilevič functions. J. Inequal. Pure Appl. Math. 2007, 8, 12. [Google Scholar]
- El-Deeb, S.M.; Bulboacă, T. Fekete-Szegö inequalities for certain class of analytic functions connected with q-anlogue of Bessel function. J. Egypt. Math. Soc. 2019, 27, 42. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Bulboacă, T. Hankel determinants for new subclasses of analytic functions related to a shell shaped region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
- Sharma, R.B.; Haripriya, M. On a class of a-convex functions subordinate to a shell shaped region. J. Anal. 2016, 25, 93–105. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Srivastava, H.M. A note on the Fekete-Szegö problem for close-to-convex functions with respect to convex functions. Publ. Inst. Math. 2017, 101, 143–149. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K.; Das, M.K. The Fekete-Szegö problem for a subclass of close-to-convex functions. Complex Var. Theory Appl. 2001, 44, 145–163. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Khan, N.; Darus, M.; Khan, S.; Ahmad, Q.Z.; Hussain, S. Fekete-Szegö type problems and their applications for a subclass of q-starlike functions with respect to symmetrical points. Mathematics 2020, 8, 842. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; Abu Jarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination. Carpathian J. Math. 2018, 34, 103–113. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mostafa, A.O.; Aouf, M.K.; Zayed, H.M. Basic and fractional q-calculus and associated Fekete-Szegö problem for p-valently q-starlike functions and p-valently q-convex functions of complex order. Miskolc Math. Notes 2019, 20, 489–509. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Fekete-Szegö inequalities for certain subclasses of analytic functions related with leaf-like domain. Montes Taurus J. Pure Appl. Math. 2021, 3, 305–316. [Google Scholar]
- Murugusundaramoorthy, G. Fekete-Szegö inequality for certain subclasses of analytic functions related with crescent-shaped domain and application of Poison distribution series. J. Math. Ext. 2021, 15, 1–20. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A Unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Int. Press: Cambridge, UK, 1994; pp. 157–169. [Google Scholar]
- Grenander, U.; Szegö, G. Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences; University of California Press: Berkeley, CA, USA, 1958. [Google Scholar]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex function. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Porwal, S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, 2014, 984135. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G. Subclasses of starlike and convex functions involving Poisson distribution series. Afr. Mat. 2017, 28, 1357–1366. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K.; Porwal, S. Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacet. J. Math. Stat. 2016, 45, 1101–1107. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Murugusundaramoorty, G.; Alburaikan, A. A bi-Bazilevič functions based on the Mittag-Leffler-Type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2021, 24, 235–245. [Google Scholar] [CrossRef]
- El-Deeb, S.M.; Murugusundaramoorthy, G. Applications on a subclass of β-uniformly starlike functions connected with -Borel distribution. Asian Eur. J. Math. 2021, 2250158. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorty, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with Borel distribution of the Mittag-Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murugusundaramoorthy, G.; Vijaya, K. Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers. Symmetry 2022, 14, 1053. https://doi.org/10.3390/sym14051053
Murugusundaramoorthy G, Vijaya K. Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers. Symmetry. 2022; 14(5):1053. https://doi.org/10.3390/sym14051053
Chicago/Turabian StyleMurugusundaramoorthy, Gangadharan, and Kaliappan Vijaya. 2022. "Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers" Symmetry 14, no. 5: 1053. https://doi.org/10.3390/sym14051053
APA StyleMurugusundaramoorthy, G., & Vijaya, K. (2022). Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers. Symmetry, 14(5), 1053. https://doi.org/10.3390/sym14051053