M-YOLO: Traffic Sign Detection Algorithm Applicable to Complex Scenarios
Abstract
:1. Introduction
2. Related Work
3. M-YOLO Traffic Sign Detection Algorithm
3.1. Improvement Scheme
- (1)
- Replace the YOLOv3 Backbone Network with MobileNetv3
- (2)
- Add Focus Module
- (3)
- Add SPPNet Module
- (4)
- Add CSPNet Module
3.2. M-YOLO Backbone Network Design
3.3. M-YOLO Network Structure
3.4. M-YOLO Algorithm Loss Function
4. Experimental Results and Analysis
4.1. Experimental Dataset
4.1.1. CCTSDB Dataset
4.1.2. HRRSD Dataset
4.2. Experimental Configuration
4.3. Experimental Evaluation Index
4.4. Experimental Results
4.4.1. Effectiveness Experiments
4.4.2. Performance Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; MIT Press: Cambridge, MA, USA, 2012; Volume 1, pp. 1097–1105. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Patterr Recognition, Las Vegas, NV, USA, June 26–1 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar]
- Zhou, X.; Wang, D.; Krähenbühl, P. Objects as points. arXiv 2019, arXiv:1904.07850. [Google Scholar]
- Law, H.; Deng, J. Cornernet: Detecting objects as paired keypoints. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 734–750. [Google Scholar]
- Liu, X.; Chi, M.; Zhang, Y.; Qin, Y. Classifying high resolution remote sensing images by fine-tuned VGG deep networks. In Proceedings of theIGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 23–27 July 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 7137–7140. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Liao, H.Y.M.; Yeh, I.; Wu, Y.; Chen, P.; Hsieh, J. CSPNet: A new backbone that can enhance learning capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 390–391. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Benallal, M.; Meunier, J. Real-time color segmentation of road signs. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Montreal, QC, Canada, 4–7 May 2003; pp. 1823–1826. [Google Scholar]
- Yang, Y.; Wu, F. Real-time traffic sign detection via color probability model and integral channel features. In Proceedings of the Chinese Conference on Pattern Recognition, Montreal, QC, Canada, 4–7 May 2003; Springer: Berlin/Heidelberg, Germany, 2014; pp. 545–554. [Google Scholar]
- Gao, X.W.; Podladchikova, L.; Shaposhnikov, D.; Hong, K.; Shevtsova, N. Recognition of traffic signs based on their colour and shape features extracted using human vision models. J. Vis. Commun. Image Represent. 2006, 17, 675–685. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; IEEE: Piscataway, NJ, USA, 2005; Volume 1, pp. 886–893. [Google Scholar]
- Gavrila, D.M. Traffic sign recognition revisited. In Mustererkennung 1999; Springer: Berlin/Heidelberg, Germany, 1999; pp. 86–93. [Google Scholar]
- Wang, G.Y.; Ren, G.H.; Wu, Z.L.; Zhao, Y.; Jiang, L. A robust, coarse-to-fine traffic sign detection method. In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCINN), Dallas, TX, USA, 4–9 August 2013; pp. 1–5. [Google Scholar]
- Paulo, C.F.; Correia, P.L. Automatic detection and classification of traffic signs. In Proceedings of the Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS’07), Santorini, Greece, 6–8 June 2007; IEEE: Piscataway, NJ, USA, 2007; p. 11. [Google Scholar]
- Creusen, I.M.; Wijnhoven, R.G.J.; Herbschleb, E.; de With, P.H.N. Color exploitation in hog-based traffic sign detection. In Proceedings of the 2010 IEEE International Conference on Image Processing, Hong Kong, 6–29 September 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 2669–2672. [Google Scholar]
- Achanta, R.; Hemami, S.; Estrada, F.; Susstrunky, S. Frequency-tuned salient region detection. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1597–1604. [Google Scholar]
- Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A cascaded R-CNN with multiscale attention and imbalanced samples for traffic sign detection. IEEE Access 2020, 8, 29742–29754. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Xie, Z.; Wang, J. Fast Traffic Sign Detection Algorithm based on Three-scale Nested Residual Structure. Comput. Res. Dev. 2020, 057, 1022–1036. [Google Scholar]
- Chen, C.; Wang, H.; Zhao, Y.; Wang, Y.; Li, L.; Li, K.; Zhang, T. A depth based traffic sign recognition algorithm. Telecommun. Technol. 2021, 61, 76–82. [Google Scholar]
- Liu, F. Traffic sign Detection based on YOLOv4-Tiny. Inf. Technol. Informatiz. 2021, 5, 18–20. [Google Scholar]
- Zhou, K.; Zhan, Y.; Fu, D. Learning region-based attention network for traffic sign recognition. Sensors 2021, 21, 686. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 2820–2828. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Jiang, B.; Luo, R.; Mao, J.; Xiao, T.; Jiang, Y. Acquisition of localization confidence for accurate object detection. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 784–799. [Google Scholar]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.Y.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized intersection over union: A metric and a loss for bounding box regression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J. Distance-IoU loss: Faster and better learning for bounding box regression. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 12993–13000. [Google Scholar]
- Zhang, Z.; Wang, H.; Zhang, J.; Yang, W. A vehicle real-time detection algorithm based on YOLOv2 framework. In Real-Time Image and Video Processing 2018. Int. Soc. Opt. Photonics 2018, 10670, 106700N. [Google Scholar]
- Shan, H.; Zhu, W. A small traffic sign detection algorithm based on modified ssd. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Wuhan, China, 10–12 October 2019; IOP Publishing: Tokyo, Japan, 2019; Volume 646, p. 012006. [Google Scholar]
- Ren, K.; Huang, L.; Fan, C. Real-time Small Traffic Sign Detection Algorithm based on Multi-scale Pixel Feature Fusion. Signal Process. 2020, 36, 1457–1463. [Google Scholar]
Layer | Module | Parameter Configuration |
---|---|---|
1 | Focus | [3, 32, 3] |
2 | InvertedResidual(benck) | [32, 16, 1, 1] |
3 | InvertedResidual(benck) | [16, 24, 2, 6] |
4 | InvertedResidual(benck) | [24, 24, 1, 6] |
5 | InvertedResidual(benck) | [24, 32, 2, 6] |
6 | InvertedResidual(benck) | [32, 32, 1, 6] |
7 | InvertedResidual(benck) | [32, 32, 1, 6] |
8 | Conv | [32, 1024, 3, 2] |
9 | SPP | [1024, 1024, [5, 9, 13]] |
10 | CSP | [1024, 1024, 6] |
11 | InvertedResidual(benck) | [102, 64, 1, 6] |
12 | InvertedResidual(benck) | [64, 96, 1, 6] |
13 | InvertedResidual(benck) | [96, 96, 1, 6] |
14 | InvertedResidual(benck) | [96, 96, 1, 6] |
15 | InvertedResidual(benck) | [96, 160, 2, 6] |
16 | InvertedResidual(benck) | [160, 160, 1, 6] |
17 | InvertedResidual(benck) | [160, 160, 1, 6] |
18 | InvertedResidual(benck) | [160, 230, 1, 6] |
Name | N_Train | N_Val | N_Test | |
---|---|---|---|---|
1 | ship | 950 | 948 | 1988 |
2 | bridge | 1123 | 1121 | 2326 |
3 | ground track field | 859 | 856 | 2017 |
4 | storage tank | 1099 | 1092 | 2215 |
5 | basketball court | 923 | 920 | 2233 |
6 | tennis court | 1043 | 1040 | 2212 |
7 | airplane | 1226 | 1222 | 2451 |
8 | baseball diamond | 1007 | 1004 | 2022 |
9 | harbor | 967 | 964 | 1953 |
10 | vehicle | 1188 | 1186 | 2382 |
11 | crossroad | 903 | 901 | 2219 |
12 | T junction | 1066 | 1065 | 2289 |
13 | parking lot | 1241 | 1237 | 2480 |
Attribute | Value |
---|---|
OS | Ubuntu18.04.4LTS |
GPU | NVIDIA RTX 2080Ti |
CUDA | 10.0 |
Deep learning framework | Pytorch1.8.1 |
Attribute | Value |
---|---|
lr0 | 0.01 |
lrf | 0.2 |
momentum | 0.937 |
weight_ decay | 0.0005 |
epoch | 110 |
batchsize | 12 |
Model | SPPNet | CPSNet | FOCUS | P/% | R/% | mAP@0.5/% |
---|---|---|---|---|---|---|
baseline | 86.1 | 95.8 | 94.5 | |||
a | ✓ | 92 | 95.1 | 95.3 | ||
b | ✓ | ✓ | 88 | 96 | 95.1 | |
c | ✓ | 90.7 | 95.6 | 96.9 | ||
d | ✓ | ✓ | 91.8 | 96.1 | 97.2 | |
e | ✓ | ✓ | 93.1 | 96.1 | 97.5 | |
f | ✓ | ✓ | 91.5 | 96.8 | 96.7 | |
ours | ✓ | ✓ | ✓ | 93.5 | 96.3 | 97.8 |
Model | P/% | R/% | mAP@0.5/% | FPS |
---|---|---|---|---|
Improved SSD [33] | - | - | 85 | - |
Improved MobileNetv2-SSD [34] | - | - | 93.2 | 45 |
Faster R-CNN | 91.6 | 90.7 | 93.5 | 21.7 |
YOLOv3 | 88.1 | 94.6 | 96 | 73 |
T-YOLO [23] | 91.3 | - | 97.3 | 19.3 |
YOLOv4 | 88.1 | 92.8 | 95.8 | 78 |
YOLOv5l | 84.9 | 95.2 | 95.4 | 85 |
Ours | 93.5 | 96.3 | 97.8 | 84 |
Model | mAP@0.5 | FPS |
---|---|---|
Fast R-CNN | 72.4 | 5 |
Faster R-CNN | 74.6 | 7 |
YOLOv2 | 79.2 | 80 |
SSD | 78.9 | 120 |
YOLOv3 | 81.2 | 110 |
YOLOv3-SPP | 83.3 | 85 |
YOLOv5l | 75.6 | 148 |
YOLOv5s-MobileNetv3 | 75.5 | 82 |
Ours | 85.5 | 150 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Shi, G.; Li, Y.; Zhao, Z. M-YOLO: Traffic Sign Detection Algorithm Applicable to Complex Scenarios. Symmetry 2022, 14, 952. https://doi.org/10.3390/sym14050952
Liu Y, Shi G, Li Y, Zhao Z. M-YOLO: Traffic Sign Detection Algorithm Applicable to Complex Scenarios. Symmetry. 2022; 14(5):952. https://doi.org/10.3390/sym14050952
Chicago/Turabian StyleLiu, Yuchen, Gang Shi, Yanxiang Li, and Ziyu Zhao. 2022. "M-YOLO: Traffic Sign Detection Algorithm Applicable to Complex Scenarios" Symmetry 14, no. 5: 952. https://doi.org/10.3390/sym14050952
APA StyleLiu, Y., Shi, G., Li, Y., & Zhao, Z. (2022). M-YOLO: Traffic Sign Detection Algorithm Applicable to Complex Scenarios. Symmetry, 14(5), 952. https://doi.org/10.3390/sym14050952