Formation of Matter-Wave Droplet Lattices in Multi-Color Periodic Confinements
Abstract
:1. Introduction
2. The Model and Analytical Framework
3. Results
3.1. Potential Profiles and Corresponding Trap Parameters
3.2. Periodic Lattice Density Patterns in QDs
3.3. Double-Well Superlattice Density Patterns in QDs
3.4. Stability of QDs in MOL Confinement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Lewenstein, M.; Sanpera, A.; Ahufinger, V. Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Schäfer, F.; Fukuhara, T.; Sugawa, S.; Takasu, Y.; Takahashi, Y. Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys. 2020, 2, 411–425. [Google Scholar] [CrossRef]
- Gross, C.; Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 2017, 357, 995–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauke, P.; Cucchietti, F.M.; Tagliacozzo, L.; Deutsch, I.; Lewenstein, M. Can one trust quantum simulators? Rep. Prog. Phys. 2012, 75, 082401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, X.; Zou, J.; Qi, X.; Li, X. Precise programmable quantum simulations with optical lattices. NPJ Quantum Inf. 2020, 6, 87. [Google Scholar] [CrossRef]
- Haller, E.; Hart, R.; Mark, M.J.; Danzl, J.G.; Reichsöllner, L.; Gustavsson, M.; Dalmonte, M.; Pupillo, G.; Nägerl, H.-C. Pinning quantum phase transition for a Luttinger liquid of strongly interacting bosons. Nature (Lond.) 2010, 466, 597–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greiner, M.; Mandel, O.; Esslinger, T.; Hänsch, T.W.; Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature (Lond.) 2002, 415, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Billy, J.; Josse, V.; Zuo, Z.; Bernard, A.; Hambrecht, B.; Lugan, P.; Clement, D.; Sanchez-Palencia, L.; Bouyer, P.; Aspect, A. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature 2008, 453, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.; Ronzheimer, J.P.; Schreiber, M.; Hodgman, S.S.; Rom, T.; Bloch, I.; Schneider, U. Negative Absolute Temperature for Motional Degrees of Freedom. Science 2013, 339, 52–55. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Bera, J.; Ghosh, S.; Roy, U. Exact Analytical Model for Bose–Einstein Condensate at Negative Temperature. Sci. Rep. 2020, 10, 9016. [Google Scholar] [CrossRef]
- Kundu, N.; Nath, A.; Bera, J.; Ghosh, S.; Roy, U. Synergy between the negative absolute temperature and the external trap for a Bose–Einstein condensate under optical lattices. Phys. Lett. A 2022, 427, 127922. [Google Scholar] [CrossRef]
- Li, J.R.; Lee, J.; Huang, W.; Burchesky, S.; Shteynas, B.; Top, F.Ç.; Jamison, A.O.; Ketterle, W. A stripe phase with supersolid properties in spin-orbit coupled Bose–Einstein condensates. Nature 2017, 543, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.M.; Wu, L.A.; Modugno, M.; Byrd, M.S.; Yu, T.; You, J.Q. Fault-tolerant breathing pattern in optical lattices as a dynamical quantum memory. Phys. Rev. A 2014, 89, 042326. [Google Scholar] [CrossRef] [Green Version]
- Brennen, G.K.; Pupillo, G.; Rey, A.M.; Clark, C.W.; Williams, C.J. Scalable register initialization for quantum computing in an optical lattice. J. Phys. B At. Mol. Opt. Phys. 2005, 38, 1687. [Google Scholar] [CrossRef]
- Katori, H. Optical lattice clocks and quantum metrology. Nat. Photonics 2011, 5, 203–210. [Google Scholar] [CrossRef]
- Yang, B.; Sun, H.; Huang, C.J.; Wang, H.Y.; Deng, Y.; Dai, H.N.; Yuan, Z.S.; Pan, J.W. Cooling and entangling ultracold atoms in optical lattices. Science 2020, 369, 550–553. [Google Scholar] [CrossRef]
- Windpassinger, P.; Sengstock, K. Engineering novel optical lattices. Rep. Prog. Phys. 2013, 76, 086401. [Google Scholar] [CrossRef]
- Yamamoto, D.; Fukuhara, T.; Danshita, I. Frustrated quantum magnetism with Bose gases in triangular optical lattices at negative absolute temperatures. Nat. Phys. 2020, 3, 56. [Google Scholar] [CrossRef] [Green Version]
- Kohlert, T.; Scherg, S.; Li, X.; Lüschen, H.P.; Sarma, S.D.; Bloch, I.; Aidelsburger, M. Observation of many-body localization in a one dimensional system with a single-particle mobility edge. Phys. Rev. Lett. 2019, 122, 170403. [Google Scholar] [CrossRef] [Green Version]
- Messer, M.; Desbuquois, R.; Uehlinger, T.; Jotzu, G.; Huber, S.; Greif, D.; Esslinger, T. Exploring Competing Density Order in the Ionic Hubbard Model with Ultracold Fermions. Phys. Rev. Lett. 2015, 115, 115303. [Google Scholar] [CrossRef] [Green Version]
- Richaud, A.; Ferraretto, M.; Capone, M. Interaction-resistant metals in multicomponent Fermi systems. Phys. Rev. B 2021, 103, 205132. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Astrakharchik, G.E.; Malomed, B.A.; Torner, L. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 2019, 1, 185. [Google Scholar] [CrossRef]
- Böttcher, F.; Schmidt, J.-N.; Hertkorn, J.; Ng, K.S.H.; Graham, S.D.; Guo, M.; Langen, T.; Pfau, T. New states of matter with fine-tuned interactions: Quantum droplets and dipolar supersolids. Rep. Prog. Phys. 2021, 84, 012403. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.-H.; Pang, W.; Liu, B.; Li, Y.-L.; Malomed, B.A. A new form of liquid matter: Quantum droplets. Front. Phys. 2021, 16, 32201. [Google Scholar] [CrossRef]
- Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose–Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of Bose–Einstein condensates. Science 2018, 359, 301–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M. Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Phys. Rev. Lett. 2018, 120, 235301. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Kadau, H.; Schmitt, M.; Wenzel, M.; Pfau, T. Observation of quantum droplets in a strongly dipolar bose gas. Phys. Rev. Lett. 2016, 116, 215301. [Google Scholar] [CrossRef]
- Edler, D.; Mishra, C.; Wächtler, F.; Nath, R.; Sinha, S.; Santos, L. Quantum fluctuations in quasi- one-dimensional dipolar bose-einstein condensates. Phys. Rev. Lett. 2017, 119, 050403. [Google Scholar] [CrossRef] [Green Version]
- Ferrier-Barbut, I.; Pfau, T. Quantum liquids get thin. Science 2018, 359, 274–275. [Google Scholar] [CrossRef]
- Astrakharchik, G.E.; Malomed, B.A. Dynamics of one-dimensional quantum droplets. Phys. Rev. A 2018, 98, 013631. [Google Scholar] [CrossRef] [Green Version]
- Tylutki, M.; Astrakharchik, G.E.; Malomed, B.A.; Petrov, D.S. Collective excitations of a one-dimensional quantum droplet. Phys. Rev. A 2020, 101, 051601. [Google Scholar] [CrossRef]
- Pathak, R.M.; Nath, A. Dynamics of Quantum Droplets in an External Harmonic Confinement. Sci. Rep. 2022, 12, 6904. [Google Scholar] [CrossRef] [PubMed]
- Morera, I.; Astrakharchik, G.E.; Polls, A.; Juliá-Díaz, B. Universal Dimerized Quantum Droplets in a One-Dimensional Lattice. Phys. Rev. Lett. 2021, 126, 023001. [Google Scholar] [CrossRef] [PubMed]
- Morera, I.; Astrakharchik, G.E.; Polls, A.; Juliá-Díaz, B. Quantum droplets of bosonic mixtures in a one-dimensional optical lattice. Phys. Rev. Res. 2020, 2, 022008. [Google Scholar] [CrossRef] [Green Version]
- Chomaz, L.; Petter, D.; Ilzhöfer, P.; Natale, G.; Trautmann, A.; Politi, C.; Durastante, G.; van Bijnen, R.M.W.; Patscheider, A.; Sohmen, M.; et al. Long-Lived and Transient Supersolid Behaviors in Dipolar Quantum Gases. Phys. Rev. X 2019, 9, 021012. [Google Scholar] [CrossRef] [Green Version]
- Norcia, M.A.; Politi, C.; Klaus, L.; Poli, E.; Sohmen, M.; Mark, M.J.; Bisset, R.; Santos, L.; Ferlaino, F. Two-dimensional supersolidity in a dipolar quantum gas. Nature (Lond.) 2021, 596, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Young, S.L.E.; Adhikari, S.K. Supersolid-like square- and honeycomb-lattice crystallization of droplets in a dipolar condensate. Phys. Rev. A 2022, 105, 033311. [Google Scholar] [CrossRef]
- Otajonov, S.R.; Tsoy, E.N.; Abdullaev, F.K. Stationary and dynamical properties of one-dimensional quantum droplets. Phys. Lett. A 2019, 383, 34. [Google Scholar] [CrossRef] [Green Version]
- Nath, A.; Roy, U. Bose–Einstein condensate in a bichromatic optical lattice: An exact analytical model. Laser Phys. Lett. 2014, 11, 115501. [Google Scholar] [CrossRef]
- Halder, B.; Ghosh, S.; Basu, P.; Bera, J.; Malomed, B.; Roy, U. Exact Solutions for Solitary Waves in a Bose–Einstein Condensate under the Action of a Four-Color Optical Lattice. Symmetry 2022, 14, 49. [Google Scholar] [CrossRef]
- Inouye, S.; Andrews, M.R.; Stenger, J.; Miesner, H.-J.; Stamper-Kurn, D.M.; Ketterle, W. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 1998, 392, 151–154. [Google Scholar] [CrossRef]
- Viebahn, K.; Sbroscia, M.; Carter, E.; Yu, J.-C.; Schneider, U. Matter-Wave Diffraction from a Quasicrystalline Optical Lattice. Phys. Rev. Lett. 2019, 122, 110404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaykovich, L.; Schreck, F.; Ferrari, G.; Bourdel, T.; Cubizolles, J.; Carr, L.D.; Castin, Y.; Salomon, C. Formation of a Matter-Wave Bright Soliton. Science 2002, 296, 1290–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Jo, G.B. One-dimensional sawtooth and zigzag lattices for ultracold atoms. Sci. Rep. 2015, 5, 16044. [Google Scholar] [CrossRef] [Green Version]
- Kengne, E.; Liu, W.-M.; Malomed, B.A. Spatiotemporal engineering of matter-wave solitons in Bose–Einstein condensates. Phys. Rep. 2021, 899, 1–62. [Google Scholar] [CrossRef]
- Nath, A.; Bera, J.; Ghosh, S.; Panigrahi, P.K.; Roy, U. Soliton dynamics for an ingenious trap combination in a Bose–Einstein condensate. Eur. Phys. J. D 2020, 74, 27. [Google Scholar] [CrossRef]
- Mithun, T.; Maluckov, A.; Kasamatsu, K.; Malomed, B.A.; Khare, A. Modulational Instability, Inter-Component Asymmetry, and Formation of Quantum Droplets in One-Dimensional Binary Bose Gases. Symmetry 2020, 12, 174. [Google Scholar] [CrossRef] [Green Version]
- Kaur, P.; Gautam, S.; Adhikari, S.K. Supersolid-like solitons in a spin-orbit-coupled spin-2 condensate. Phys. Rev. A 2022, 105, 023303. [Google Scholar] [CrossRef]
- Vakhitov, N.; Kolokolov, A.A. Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron. 1973, 16, 783. [Google Scholar] [CrossRef]
- Sardanashvily, G. Noether’s Theorems. Applications in Mechanics and Field Theory; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Owyed, S.; Abdou, M.A.; Abdel-Aty, A.-H.; Ibraheem, A.A.; Nekhili, R.; Baleanu, D. New optical soliton solutions of space-time fractional nonlinear dynamics of microtubules via three integration schemes. J. Intell. Fuzzy Syst. 2020, 38, 2859–2866. [Google Scholar] [CrossRef]
Multi-Color OL (for ) | ||
---|---|---|
Trap form | ||
0 | 0 | Free space |
<1 | 0 | OL (k) |
0 | ≠0 | BOL (, ) |
>1 | 0 | BOL (k, ) |
8 | −2 | BOL (, ) |
8 | 2 | BOL (, ) |
≠8 | −2 | TOL (, , ) |
≠8 | 2 | TOL (, , ) |
Other points | Other points | FOL (k, , , ) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathak, M.R.; Nath, A. Formation of Matter-Wave Droplet Lattices in Multi-Color Periodic Confinements. Symmetry 2022, 14, 963. https://doi.org/10.3390/sym14050963
Pathak MR, Nath A. Formation of Matter-Wave Droplet Lattices in Multi-Color Periodic Confinements. Symmetry. 2022; 14(5):963. https://doi.org/10.3390/sym14050963
Chicago/Turabian StylePathak, Maitri R., and Ajay Nath. 2022. "Formation of Matter-Wave Droplet Lattices in Multi-Color Periodic Confinements" Symmetry 14, no. 5: 963. https://doi.org/10.3390/sym14050963
APA StylePathak, M. R., & Nath, A. (2022). Formation of Matter-Wave Droplet Lattices in Multi-Color Periodic Confinements. Symmetry, 14(5), 963. https://doi.org/10.3390/sym14050963