An Improved EDAS Method for the Multi-Attribute Decision Making Based on the Dynamic Expectation Level of Decision Makers
Abstract
:1. Introduction
2. Preliminaries
2.1. Interval-Valued Intuitionistic Trapezoidal Fuzzy Number
2.2. Prospect Theory
2.3. Evaluation Based on Distance from Average Solution (EDAS)
3. The Dynamic Expectation Level of the Emergency Plan Based on the Programming Model
3.1. A New Distance between Interval-Valued Intuitionistic Trapezoidal Fuzzy Numbers
3.2. The Dynamic Expectation Level of the Emergency Plan
4. An Improved EDAS Method Based on the Dynamic Expectation Level of the Emergency Plan
5. Numerical Example
5.1. An Emergency Rescue of Flood Disaster
5.2. Comparison with the Existing Methods
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, N.; Jin, W.; Zhang, P.; Zhang, Y.; Wang, G. Analysis of impact characteristics and suggestions on disaster reduction for “7.20” extreme rainstorm disasters in Henan Province 2021. China Flood Drought Manag. 2022, 32, 31–37. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Guo, E.; Zhang, J.; Ren, X.; Zhang, Q.; Sun, Z. Integrated risk assessment of flood disaster based on improved set pair analysis and the variable fuzzy set theory in central Liaoning Province, China. Nat. Hazards 2014, 74, 947–965. [Google Scholar] [CrossRef]
- Wu, H.; Wang, J.W.; Liu, S.; Yang, T. Research on decision–making of emergency plan for waterlogging disaster in subway station project based on linguistic intuitionistic fuzzy set and TOPSIS. Math. Biosci. Eng. 2020, 17, 4825–4851. [Google Scholar] [CrossRef] [PubMed]
- He, X. Typhoon disaster assessment based on Dombi hesitant fuzzy information aggregation operators. Nat. Hazards 2018, 90, 1153–1175. [Google Scholar] [CrossRef]
- Peng, X.; Li, W. Algorithms for interval–valued pythagorean fuzzy sets in emergency decision making based on multiparametric similarity measures and WDBA. IEEE Access 2019, 7, 7419–7441. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Zhang, S. A new methodology for hesitant fuzzy emergency decision making with unknown weight information. Complexity 2018, 2018, 1–12. [Google Scholar] [CrossRef]
- Ashraf, S.; Abdullah, S.; Almagrabi, A.O. A new emergency response of spherical intelligent fuzzy decision process to diagnose of COVID19. Soft Comput. 2020, 2020, 29. [Google Scholar] [CrossRef]
- Ding, X.F.; Zhang, L.; Liu, H.C. Emergency decision making with extended axiomatic design approach under picture fuzzy environment. Expert Syst. 2020, 37, e12482. [Google Scholar] [CrossRef]
- Li, H.; Guo, J.Y.; Yazdi, M.; Nedjati, A.; Adesina, K.A. Supportive emergency decision–making model towards sustainable development with fuzzy expert system. Neural Comput. Appl. 2021, 33, 15619–15637. [Google Scholar] [CrossRef]
- Ding, X.; Li, Q. Optimal risk allocation in alliance infrastructure projects: A social preference perspective. Front. Eng. Manag. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Kang, L.; Li, H.; Li, C.; Xiao, N.; Sun, H.; Buhigiro, N. Risk warning technologies and emergency response mechanisms in Sichuan–Tibet Railway construction. Front. Eng. Manag. 2021, 8, 582–594. [Google Scholar] [CrossRef]
- Ren, P.; Xu, Z.; Hao, Z. Hesitant fuzzy thermodynamic method for emergency decision making based on prospect theory. IEEE Trans. Cybern. 2016, 47, 2531–2543. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Tu, Y.; Ju, Y.; Shen, W. A multi-granularity proportional hesitant fuzzy linguistic TODIM method and its application to emergency decision making. Int. J. Disaster Risk Reduct. 2019, 36, 101081. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, Y.M.; Goh, M. TODIM dynamic emergency decision–making method based on hybrid weighted distance under probabilistic hesitant fuzzy information. Int. J. Fuzzy Syst. 2021, 23, 474–491. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Zavadskas, E.K.; Olfat, L.; Turskis, Z. Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS). Informatica 2015, 26, 435–451. [Google Scholar] [CrossRef]
- Keshavarz Ghorabaee, M.; Amiri, M.; Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. A dynamic fuzzy approach based on the EDAS method for multi–criteria subcontractor evaluation. Information 2018, 9, 68–82. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Overview on fuzzy multi–criteria decision–making approach. Control Decis. 2008, 23, 601–607. [Google Scholar]
- Wan, S. Multi-attribute decision making method based on interval intuitionistic trapezoidal fuzzy number. Control Decis. 2012, 27, 455–458. [Google Scholar]
- Tversky, A.; Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertain. 1992, 5, 297–323. [Google Scholar] [CrossRef]
- Wang, Y.M.; Yang, J.B.; Xu, D.L.; Chin, K.S. On the centroids of fuzzy numbers. Fuzzy Sets Syst. 2006, 157, 919–926. [Google Scholar] [CrossRef]
- Liu, Y. A multistage dynamic emergency decision–making method considering the satisfaction under uncertainty information. J. Adv. Transp. 2021, 2021, 5535925. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Z.P.; Zhang, Y. Risk decision analysis in emergency response: A method based on cumulative prospect theory. Comput. Oper. Res. 2014, 42, 75–82. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.; Wei, C.; Liu, J. A new EDAS method based on prospect theory for Pythagorean fuzzy set and its application in selecting investment projects for highway. Kybernetes 2021, 2021, 1–16. [Google Scholar] [CrossRef]
The Research on Uncertainty in Emergency Decision Making | |
---|---|
Liu et al. [7] | Applied the hesitant fuzzy set to emergency decision making |
Ashraf et al. [8] | Applied the spherical fuzzy set to diagnose COVID-19 |
Ding et al. [9] | Applied the picture fuzzy set to deal with emergency decision making |
Li et al. [10] | Applied the fuzzy expert system to deal with the Golestan flood in 2019 |
Ding et al. [11] | Considered an optimal risk allocation in emergency decision making |
Kang et al. [12] | Provided the fuzzy recommendation for emergency rescue |
Linguistic Variables | The IITrFNs of Linguistic Variable |
---|---|
Absolutely low (AL) | () |
Low (L) | () |
Fairly low (FL) | () |
Medium (M) | () |
Fairly high (FH) | () |
High (H) | () |
Absolutely high (AH) | () |
Attribute | ||||
---|---|---|---|---|
Emergency Plan | ||||
0.25 | 0 | 1 | ||
0.5 | 0.8 | 0 | ||
0.75 | 0.4 | 0.2 |
PDA | Original EDAS Method | Improved EDAS Method | ||||
---|---|---|---|---|---|---|
0 | 0 | 1.5 | 0 | 0 | 1.4 | |
0 | 1 | 0 | 0.01 | 1.23 | 0 | |
0.5 | 0 | 0 | 1.23 | 0.01 | 0 |
NDA | Original EDAS Method | Improved EDAS Method | ||||
---|---|---|---|---|---|---|
0.5 | 1 | 0 | 1.21 | 1.22 | 0 | |
0 | 0 | 1 | 0 | 0 | 0.92 | |
0 | 0 | 0.5 | 0 | 0 | 0.46 |
Original Method | Improved Method | |||||
---|---|---|---|---|---|---|
0.5 | 0.5 | 0.5 | 0.47 | 1.41 | 0.5 | |
0.33 | 0.33 | 0.5 | 0.41 | 0.82 | 0.66 | |
0.17 | 0.17 | 0.5 | 0.41 | 0.41 | 0.80 |
Emergency Plan | Emergency Measure | |
---|---|---|
Traffic Control | Rescue Measure | |
Do not close lanes, Keep traffic moving in time-phased sharing | Small machinery | |
Close one side of the road, Keep traffic moving in the other line | Medium-sized machinery | |
Close all lanes, Stop the traffic except emergency vehicles | Large machinery |
Decision-Making Stage | Details |
---|---|
00:00–08:00 a.m.: light to moderate rain; the situation is easy to out of control; the adverse trends might have a big effect on the rescue progress. | |
08:00–16:00 p.m.: moderate to heavy rain; the emergency situation is likely to deteriorate; the management is more and more difficult. | |
16:00–24:00 p.m.: extreme weather is gradually weakening; benefit to the rescue work. |
M | L | M | H | FH | FH | H | M | FH | M | H | FH | FH | FH | L | ||
FH | FH | FH | H | H | H | FH | H | H | FH | FH | H | H | FH | FH | ||
FL | FL | FL | M | FL | M | FL | FL | M | FL | M | FH | M | FL | M | ||
M | FL | M | H | H | FH | M | H | M | FH | H | FH | H | M | FH | ||
M | FH | H | H | FH | H | FH | H | FH | H | FH | H | FH | H | H | ||
H | AH | AH | FH | H | H | H | AH | H | H | H | H | H | FH | M | ||
FH | H | FH | FH | M | H | FH | M | H | H | AH | H | FH | M | H | ||
H | H | AH | FH | FH | H | FH | FH | H | AH | AH | H | FH | H | FH | ||
AH | AH | AH | H | H | AH | H | H | H | H | H | H | H | AH | H |
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () |
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () |
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () | ||
() | () | () |
([0.55, 0.65, 0.75, 0.85]; [0.57, 0.68], [0.21, 0.32]) | ([0.56, 0.66, 0.76, 0.86]; [0.57, 0.68], [0.22, 0.32]) | ([0.37, 0.47, 0.57, 0.67]; [0.37, 0.47], [0.43, 0.53]) | ||
([0.44, 0.54, 0.64, 0.74]; [0.49, 0.60], [0.28, 0.40]) | ([0.58, 0.68, 0.78, 0.88]; [0.59, 0.69], [0.19, 0.30]) | ([0.38, 0.48, 0.58, 0.68]; [0.39, 0.49], [0.41, 0.51]) | ||
([0.44, 0.54, 0.64, 0.74]; [0.44, 0.54], [0.36, 0.46]) | ([0.64, 0.74, 0.74, 0.94]; [0.65, 0.75], [0.14, 0.25]) | ([0.34, 0.44, 0.54, 0.64]; [0.34, 0.44], [0.46, 0.56]) | ||
([0.56, 0.66, 0.76, 0.86]; [0.57, 0.68], [0.22, 0.32]) | ([0.62, 0.72, 0.82, 0.92]; [0.63, 0.74], [0.16, 0.26]) | ([0.36, 0.46, 0.56, 0.66]; [0.36, 0.46], [0.44, 0.54]) | ||
([0.31, 0.41, 0.51, 0.61]; [0.33, 0.44], [0.46, 0.56]) | ([0.56, 0.66, 0.76, 0.86]; [0.57, 0.68], [0.22, 0.32]) | ([0.34, 0.44, 0.54, 0.64]; [0.34, 0.44], [0.46, 0.56]) | ||
([0.55, 0.65, 0.75, 0.85]; [0.57, 0.68], [0.21, 0.32]) | ([0.53, 0.63, 0.73, 0.83]; [0.55, 0.65], [0.24, 0.35]) | ([0.70, 0.80, 0.90, 1.00]; [0.70, 0.80], [0.10, 0.20]) | ||
([0.41, 0.51, 0.61, 0.71]; [0.42, 0.52], [0.38, 0.48]) | ([0.58, 0.68, 0.78, 0.88]; [0.59, 0.70], [0.19, 0.30]) | ([0.73, 0.83, 0.93, 1.00]; [1.00, 1.00], [0.00, 0.00]) | ||
([0.61, 0.71, 0.81, 0.91]; [0.63, 0.74], [0.15, 0.26]) | ([0.62, 0.72, 0.82, 0.92]; [0.63, 0.74], [0.16, 0.26]) | ([0.76, 0.86, 0.96, 1.00]; [1.00, 1.00], [0.00, 0.00]) | ||
([0.49, 0.59, 0.69, 0.79]; [0.51, 0.62], [0.26, 0.38]) | ([0.64, 0.74, 0.84, 0.94]; [0.65, 0.75], [0.14, 0.25]) | ([0.56, 0.66, 0.76, 0.86]; [0.57, 0.68], [0.22, 0.32]) | ||
([0.56, 0.66, 0.76, 0.86]; [0.57, 0.68], [0.22, 0.32]) | ([0.64, 0.74, 0.84, 0.94]; [0.65, 0.75], [0.14, 0.25]) | ([0.58, 0.68, 0.78, 0.88]; [0.60, 0.71], [0.17, 0.29]) | ||
([0.68, 0.78, 0.88, 0.94]; [1.00, 1.00], [0.00, 0.00]) | ([0.74, 0.84, 0.94, 1.00]; [1.00, 1.00], [0.00, 0.00]) | ([0.76, 0.86, 0.96, 1.00]; [1.00, 1.00], [0.00, 0.00]) | ||
([0.64, 0.74, 0.84, 0.94]; [0.65, 0.75], [0.14, 0.25]) | ([0.64, 0.74, 0.84, 1.00]; [0.65, 0.75], [0.14, 0.25]) | ([0.73, 0.83, 0.93, 1.00]; [1.00, 1.00], [0.00, 0.00]) | ||
([0.47, 0.57, 0.67, 0.77]; [0.47, 0.57], [0.33, 0.43]) | ([0.59, 0.69, 0.79, 0.86]; [1.00, 1.00], [0.00, 0.00]) | ([0.73, 0.83, 0.93, 1.00]; [1.00, 1.00], [0.00, 0.00]) | ||
([0.52, 0.64, 0.72, 0.82]; [0.54, 0.64], [0.24, 0.36]) | ([0.64, 0.74, 0.84, 0.94]; [0.65, 0.75], [0.14, 0.25]) | ([0.74, 0.84, 0.94, 1.00]; [1.00, 1.00], [0.00, 0.00]) | ||
([0.61, 0.71, 0.81, 0.91]; [0.63, 0.74], [0.15, 0.26]) | ([0.59, 0.69, 0.79, 0.86]; [1.00, 1.00], [0.00, 0.00]) | ([0.70, 0.80, 0.90, 1.00]; [0.70, 0.80], [0.10, 0.20]) |
0.67 | 0.68 | 0.08 | 0.27 | 0.24 | 0.60 | 0.88 | 0.98 | 1 | |||
0.36 | 0.76 | 0.12 | 0 | 0.33 | 0.96 | 0.41 | 0.41 | 0.96 | |||
0.25 | 1 | 0.03 | 0.41 | 0.43 | 1 | 0 | 0.74 | 0.96 | |||
0.68 | 0.92 | 0.06 | 0.17 | 0.46 | 0.30 | 0.13 | 0.41 | 0.97 | |||
0 | 0.68 | 0.03 | 0.29 | 0.46 | 0.36 | 0.35 | 0.74 | 0.55 |
0.17 | 0.18 | 0.25 | 0.23 | 0.17 | |
0.18 | 0.30 | 0.31 | 0.10 | 0.11 | |
0.225 | 0.216 | 0.216 | 0.219 | 0.124 |
0.31 | 0.35 | 0.45 | 0.42 | 0.31 | |
0.29 | 0.47 | 0.49 | 0.14 | 0.18 | |
0.455 | 0.438 | 0.438 | 0.444 | 0.252 |
0.41 | 0.42 | −0.60 | −0.07 | −0.18 | 0.35 | 0.47 | 0.56 | 0.59 | |||
0.03 | 0.46 | −0.60 | −1.17 | −0.42 | 0.53 | −0.10 | −0.10 | 0.57 | |||
−0.54 | 0.59 | −1.06 | −0.25 | −0.20 | 0.55 | −1.09 | 0.35 | 0.57 | |||
0.31 | 0.55 | −0.90 | 0.04 | 0.37 | 0.19 | −0.81 | −0.11 | 0.57 | |||
−0.80 | 0.42 | −0.74 | 0.15 | 0.33 | 0.23 | 0.13 | 0.54 | 0.35 |
24.2453 | 0.9563 | 0 | 2.7844 | 0 | ||
24.9360 | 4.1981 | 2.2787 | 4.3841 | 2.0742 | ||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0.9910 | 0.5979 | ||
8.6946 | 2.4964 | 14.1794 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 | ||
0.6717 | 0 | 4.4893 | 0.0091 | 1.3932 | ||
1.2722 | 2.8638 | 6.8201 | 4.0377 | 0.0868 |
0 | 0 | 0.389 | 0 | 1.6186 | ||
0 | 0 | 0 | 0 | 0 | ||
36.3561 | 3.8506 | 1.9517 | 4.9530 | 1.3586 | ||
2.1436 | 2.2879 | 5.4054 | 1.4875 | 1.2860 | ||
4.3780 | 0.1950 | 4.4296 | 0 | 0 | ||
0 | 0 | 0 | 0.1069 | 0.1013 | ||
1.1190 | 1.9547 | 10.3874 | 4.0583 | 1.3643 | ||
0 | 1.9547 | 0 | 0 | 0 | ||
0 | 0 | 0 | 0 | 0 |
4.8988 | 0.3687 | 0.8336 | 0 | 3.0464 | 0 | 0 | 2.4923 | 0 | |
6.9024 | 0 | 1 | 0.2789 | 2.2487 | 0.1618 | 0.9839 | 0.4512 | 0.6268 | |
0 | 8.6891 | 0 | 4.5148 | 0.0211 | 1 | 2.2633 | 0 | 1 |
Stage | The Method in Wan [19] | The Method in Liu [22] | The Method in Li et al. [24] | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Plan | ||||||||||
0.11 | 0.13 | 0.73 | 0.33 | 0.33 | 0.40 | 0.50 | 0.00 | 0.00 | ||
0.21 | 0.24 | 0.79 | 0.51 | 0.49 | 0.75 | 1.00 | 0.09 | 0.61 | ||
−0.03 | 0.71 | 0.88 | 0.24 | 0.60 | 0.86 | 0.00 | 1.00 | 1.00 |
Ranking Result | ||||
---|---|---|---|---|
The Existing Method | ||||
Proposed by Wan [19] | ||||
Proposed by Liu [22] | ||||
Proposed by Li et al. [24] | ||||
The proposed method |
Method | Criteria Weights | ||||
---|---|---|---|---|---|
Changed weight 1 | 0.7226 | 1 | 0 | ||
Changed weight 2 | 0.6108 | 1 | 0 | ||
The proposed method | 0.8336 | 1 | 0 | ||
Changed weight 1 | 0 | 0.5475 | 1 | ||
Changed weight 2 | 0 | 0.8136 | 1 | ||
The proposed method | 0 | 0.1618 | 1 | ||
Changed weight 1 | 0 | 0.8129 | 1 | ||
Changed weight 2 | 0 | 0.7982 | 1 | ||
The proposed method | 0 | 0.6268 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, D.; Wang, J.; Liu, D.; Liu, Z. An Improved EDAS Method for the Multi-Attribute Decision Making Based on the Dynamic Expectation Level of Decision Makers. Symmetry 2022, 14, 979. https://doi.org/10.3390/sym14050979
Peng D, Wang J, Liu D, Liu Z. An Improved EDAS Method for the Multi-Attribute Decision Making Based on the Dynamic Expectation Level of Decision Makers. Symmetry. 2022; 14(5):979. https://doi.org/10.3390/sym14050979
Chicago/Turabian StylePeng, Dan, Jie Wang, Donghai Liu, and Zaiming Liu. 2022. "An Improved EDAS Method for the Multi-Attribute Decision Making Based on the Dynamic Expectation Level of Decision Makers" Symmetry 14, no. 5: 979. https://doi.org/10.3390/sym14050979
APA StylePeng, D., Wang, J., Liu, D., & Liu, Z. (2022). An Improved EDAS Method for the Multi-Attribute Decision Making Based on the Dynamic Expectation Level of Decision Makers. Symmetry, 14(5), 979. https://doi.org/10.3390/sym14050979