Extended Legendrian Dualities Theorem in Singularity Theory
Abstract
:1. Introduction
2. Basic Notions on Legendrian Dualities in Semi-Euclidean Space
3. Extended Legendrian Dualities Theorem
4. Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitney, H. On Singularities of mappings of Euclidean space I: Mappings of the plane in the plane. Ann. Math. 1955, 62, 374–410. [Google Scholar] [CrossRef]
- Izumiya, S.; Romero Fuster, M.D.C.; Ruas, M.A.S.; Tari, F. Differential Geometry from a Singularity Theory Viewpoint; World Scientific: Singapore, 2016. [Google Scholar]
- Arnol’d, V.I.; Guesein-zade, S.M.; Varchenko, A.N. Singularities of Differentiable Maps; Birkhäuser: Basel, Switzerland, 1988. [Google Scholar]
- Bruce, J.W.; Giblin, P.J. Curves and Singularities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Izumiya, S. Timelike hypersurfaces in de Sitter space and Legendrian singularities. J. Math. Sci. 2007, 144, 3789–3803. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Izumiya, S. A mandala of Legendrian dualities for pseudo-spheres in semi-Euclidean space. Proc. Jpn. Acad. A- Math. 2009, 85, 49–54. [Google Scholar] [CrossRef]
- Izumiya, S.; Yildirim, H. Extensions of the mandala of Legendrian dualities for pseudo-spheres in Lorentz-Minkowski space. Topol. Appl. 2012, 159, 509–518. [Google Scholar] [CrossRef]
- Nagai, T. The Gauss map of a hypersurface in Euclidean sphere and the spherical Legendrian duality. Topol. Appl. 2012, 159, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.L.; Liu, S.Y.; Wang, Z.G. Tangent developables and Darboux developables of framed curves. Topol. Appl. 2021, 301, 107526. [Google Scholar] [CrossRef]
- Izumiya, S. Legendrian dualities and spacelike hypersurfaces in the lightcone. Moscow Math. J. 2009, 9, 325–357. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Pei, D.H.; Cui, X.P. Pseudo-spherical normal Darboux images of curves on a lightlike surface. Math. Methods Appl. Sci. 2017, 40, 7151–7161. [Google Scholar] [CrossRef]
- Zhou, K.; Wang, Z. Pseudo-spherical Darboux images and lightcone images of principal-directional curves of nonlightlike curves in Minkowski 3-space. Math. Methods Appl. Sci. 2020, 43, 35–77. [Google Scholar] [CrossRef]
- Chen, L.; Izumiya, S.; Pei, D.H. Timelike hypersurfaces in anti-de Sitter space from a contact view point. J. Math. Sci. 2014, 199, 629–644. [Google Scholar] [CrossRef]
- Chen, L.; Izumiya, S. Singularities of Anti de Sitter torus Gauss maps. Bull. Braz. Math. Soc. 2010, 41, 37–61. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Izumiya, S.; Pei, D.; Saji, K. Anti de Sitter horospherical flat timelike surfaces. Sci. China Math. 2014, 57, 1841–1866. [Google Scholar] [CrossRef]
- Chen, L.; Takahashi, M. Dualities and evolutes of fronts in hyperbolic 2-space and de Sitter 2-space. J. Math. Anal. Appl. 2015, 437, 133–159. [Google Scholar] [CrossRef] [Green Version]
- Pei, D.H.; Wang, Y.Q. Spacelike submanifolds of codimension two in anti-de Sitter space. Appl. Anal. 2019, 98, 1–16. [Google Scholar] [CrossRef]
- Li, Y.L.; Wang, Z.G. Lightlike tangent developables in de Sitter 3-space. J. Geom. Phys. 2021, 164, 104188. [Google Scholar] [CrossRef]
- Li, Y.L.; Zhu, Y.S.; Sun, Q.Y. Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space. Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150008. [Google Scholar] [CrossRef]
- Liu, H.M.; Miao, J.J. Geometric invariants and focal surfaces of spacelike curves in de Sitter space from a caustic viewpoint. AIMS Math. 2021, 6, 3177–3204. [Google Scholar] [CrossRef]
- Liu, H.M.; Miao, J.J. Singularities of timelike Anti-de Sitter Gauss images of spacelike hypersurfaces in Anti-de Sitter n-space. Sci. Sin. Math. 2010, 40, 813–826. [Google Scholar]
- Liu, H.M.; Pei, D.H. Lightcone dual surfaces and hyperbolic dual surfaces of spacelike curves in de Sitter 3-space. J. Nonlinear Sci. Appl. 2016, 9, 2563–2576. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.M.; Pei, D.H. Legendrian dualities between spherical indicatrixes of curves and surfaces according to Bishop frame. J. Nonlinear Sci. Appl. 2016, 9, 2875–2887. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Q.; Chang, Y.; Liu, H.M. Singularities of helix surfaces in Euclidean 3-space. J. Geom. Phys. 2020, 156, 103781. [Google Scholar] [CrossRef]
- Liu, H.M.; Miao, J.J. Geometric Properties of Lorentzian Hypersurfaces in Open Nullcone. Math. Pract. Theory 2021, 50, 1–6. [Google Scholar]
- Li, Y.L.; Dey, S.; Pahan, S.; Ali, A. Geometry of conformal η-Ricci solitons and conformal η-Ricci almost solitons on Paracontact geometry. Open Math. 2022, 20, 1–20. [Google Scholar] [CrossRef]
- Li, Y.L.; Ganguly, D.; Dey, S.; Bhattacharyya, A. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds. AIMS Math. 2022, 7, 5408–5430. [Google Scholar] [CrossRef]
- Li, Y.L.; Alkhaldi, A.H.; Ali, A.; Laurian-Ioan, P. On the Topology of Warped Product Pointwise Semi-Slant Submanifolds with Positive Curvature. Mathematics 2021, 9, 3156. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Alluhaibi, N. Homology groups in warped product submanifolds in hyperbolic spaces. J. Math. 2021, 2021, 8554738. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Ali, R. A general inequality for CR-warped products in generalized Sasakian space form and its applications. Adv. Math. Phys. 2021, 2021, 5777554. [Google Scholar] [CrossRef]
- Li, Y.L.; Lone, M.A.; Wani, U.A. Biharmonic submanifolds of Kähler product manifolds. AIMS Math. 2021, 6, 9309–9321. [Google Scholar] [CrossRef]
- Li, Y.L.; Abolarinwa, A.; Azami, S.; Ali, A. Yamabe constant evolution and monotonicity along the conformal Ricci flow. AIMS Math. 2022, 7, 12077–12090. [Google Scholar] [CrossRef]
- Li, Y.L.; Ali, A.; Mofarreh, F.; Abolarinwa, A.; Ali, R. Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms. J. Funct. Space 2021, 2021, 6195939. [Google Scholar]
- Yang, Z.C.; Li, Y.L.; Erdoǧdub, M.; Zhu, Y.S. Evolving evolutoids and pedaloids from viewpoints of envelope and singularity theory in Minkowski plane. J. Geom. Phys. 2022, 104513, 1–23. [Google Scholar] [CrossRef]
- Liu, H.; Miao, J.; Li, W.; Guan, J. The sub-Riemannian limit of curvatures for curves and surfaces and a Gauss-Bonnet theorem in the rototranslation group. J. Math. 2021, 2021, 9981442. [Google Scholar] [CrossRef]
- Liu, H.M.; Miao, J.J. Gauss-Bonnet theorem in Lorentzian Sasakian space forms. AIMS Math. 2021, 6, 8772–8791. [Google Scholar] [CrossRef]
- Liu, H.M.; Guan, J.Y. The sub-Riemannian limit of curvatures for curves and surfaces and a Gauss-Bonnet theorem in the group of rigid motions of Minkowski plane with general left-invariant metric. J. Funct. Space 2021, 2021, 1431082. [Google Scholar]
- Li, W.Z.; Liu, H.M. Gauss-Bonnet Theorem in the Universal Covering Group of Euclidean Motion Group E(2) with the General Left-Invariant Metric. J. Nonlinear Math. Phys. 2022, 2022, 1–32. [Google Scholar] [CrossRef]
Conditions | Constant Normal Vector | Classifications |
---|---|---|
M is a subset of | ||
M is a subset of | ||
M is a subset of |
Conditions | Relations among Gaussian Maps |
---|---|
Conditions | Relations among Gaussian Maps |
---|---|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Miao, J. Extended Legendrian Dualities Theorem in Singularity Theory. Symmetry 2022, 14, 982. https://doi.org/10.3390/sym14050982
Liu H, Miao J. Extended Legendrian Dualities Theorem in Singularity Theory. Symmetry. 2022; 14(5):982. https://doi.org/10.3390/sym14050982
Chicago/Turabian StyleLiu, Haiming, and Jiajing Miao. 2022. "Extended Legendrian Dualities Theorem in Singularity Theory" Symmetry 14, no. 5: 982. https://doi.org/10.3390/sym14050982
APA StyleLiu, H., & Miao, J. (2022). Extended Legendrian Dualities Theorem in Singularity Theory. Symmetry, 14(5), 982. https://doi.org/10.3390/sym14050982