A Behavior-Simulated Spherical Fuzzy Extension of the Integrated Multi-Criteria Decision-Making Approach
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Spherical Fuzzy Sets
3.2. The Extended Spherical Fuzzy DEMATEL (SF DEMATEL)
3.3. The Extended Spherical Fuzzy TODIM with Monte Carlo Simulation (SF TODIM’MC)
4. Numerical Results
4.1. Negative Effect Identification and Prioritization by Fuzzy DEMATEL Method
- The increase in costs in all logistics activities (NE-01);
- Decline in inventory capacity due to limited warehouse operations (NE-02);
- Declining demand and supply constraints lead to a decrease in the volume of goods throughout the supply chain (NE-03);
- The social health situation, as well as movement restrictions to control the epidemic, have severely reduced the workforce in the logistics sector (NE-04);
- Disruption of transportation operations resulting in increased goods damage (NE-05).
- The disruption of the global logistics network is the cause of the local breakdown (NE-06);
- Many third-party logistics service providers have to close temporarily or permanently resulting in shortages of services (NE-07);
- Trading activities face many obstacles due to the blockade of border gates, ports, and economic zones (NE-08).
- Transportation activities have been greatly hindered due to epidemic control. Among them, delay in delivery time (NE-09) and limited choice of transportation modes (NE-10) are two noticeable negative effects.
Negative Effect | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
---|---|---|---|---|---|---|---|---|---|---|
NE-01 | NI | MI | SI | MI | SI | WI | MI | MI | SI | SI |
NE-02 | WI | NI | MI | MI | NI | WI | NI | NI | MI | SI |
NE-03 | SI | SI | NI | MI | NI | NI | WI | NI | SI | MI |
NE-04 | SI | MI | SI | NI | WI | NI | WI | NI | NI | WI |
NE-05 | NI | WI | WI | WI | NI | WI | NI | WI | NI | NI |
NE-06 | WI | NI | MI | MI | WI | NI | SI | MI | MI | MI |
NE-07 | NI | MI | WI | NI | NI | MI | NI | NI | NI | MI |
NE-08 | WI | NI | MI | SI | WI | NI | MI | NI | WI | MI |
NE-09 | SI | SI | WI | NI | WI | WI | SI | SI | NI | SI |
NE-10 | MI | WI | MI | MI | NI | NI | NI | MI | NI | NI |
Negative Effect | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 |
NE-01 | (0.00, 0.30, 0.20) | (0.74, 0.18, 0.48) | (0.69, 0.19, 0.46) | (0.71, 0.19, 0.48) | (0.42, 0.26, 0.37) |
NE-02 | (0.56, 0.22, 0.44) | (0.00, 0.30, 0.20) | (0.54, 0.23, 0.39) | (0.45, 0.24, 0.30) | (0.41, 0.26, 0.38) |
NE-03 | (0.67, 0.20, 0.47) | (0.57, 0.23, 0.44) | (0.00, 0.30, 0.20) | (0.52, 0.23, 0.39) | (0.44, 0.25, 0.38) |
NE-04 | (0.61, 0.21, 0.44) | (0.68, 0.20, 0.46) | (0.64, 0.20, 0.44) | (0.00, 0.30, 0.20) | (0.57, 0.22, 0.44) |
NE-05 | (0.61, 0.21, 0.44) | (0.51, 0.23, 0.39) | (0.48, 0.23, 0.31) | (0.39, 0.25, 0.28) | (0.00, 0.30, 0.20) |
NE-06 | (0.65, 0.21, 0.47) | (0.60, 0.21, 0.40) | (0.59, 0.21, 0.40) | (0.59, 0.22, 0.44) | (0.46, 0.25, 0.38) |
NE-07 | (0.63, 0.22, 0.47) | (0.71, 0.19, 0.48) | (0.67, 0.20, 0.47) | (0.57, 0.24, 0.48) | (0.44, 0.24, 0.30) |
NE-08 | (0.42, 0.26, 0.37) | (0.45, 0.24, 0.30) | (0.50, 0.22, 0.32) | (0.67, 0.20, 0.47) | (0.49, 0.23, 0.38) |
NE-09 | (0.54, 0.24, 0.44) | (0.53, 0.23, 0.44) | (0.70, 0.19, 0.48) | (0.53, 0.23, 0.39) | (0.39, 0.25, 0.28) |
NE-10 | (0.52, 0.23, 0.39) | (0.50, 0.24, 0.38) | (0.65, 0.20, 0.47) | (0.68, 0.21, 0.49) | (0.54, 0.24, 0.44) |
Negative Effect | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
NE-01 | (0.58, 0.21, 0.40) | (0.66, 0.20, 0.47) | (0.78, 0.17, 0.47) | (0.75, 0.18, 0.48) | (0.69, 0.19, 0.46) |
NE-02 | (0.32, 0.26, 0.25) | (0.57, 0.23, 0.44) | (0.57, 0.22, 0.44) | (0.51, 0.22, 0.32) | (0.54, 0.24, 0.44) |
NE-03 | (0.36, 0.26, 0.27) | (0.50, 0.24, 0.39) | (0.64, 0.21, 0.47) | (0.59, 0.22, 0.44) | (0.50, 0.24, 0.39) |
NE-04 | (0.34, 0.26, 0.26) | (0.53, 0.23, 0.39) | (0.61, 0.21, 0.44) | (0.64, 0.20, 0.44) | (0.68, 0.21, 0.49) |
NE-05 | (0.25, 0.27, 0.23) | (0.41, 0.26, 0.37) | (0.43, 0.24, 0.29) | (0.54, 0.23, 0.39) | (0.35, 0.26, 0.27) |
NE-06 | (0.00, 0.30, 0.20) | (0.68, 0.20, 0.46) | (0.69, 0.19, 0.46) | (0.57, 0.22, 0.40) | (0.49, 0.24, 0.38) |
NE-07 | (0.38, 0.25, 0.27) | (0.00, 0.30, 0.20) | (0.66, 0.21, 0.47) | (0.67, 0.2, 0.47) | (0.61, 0.21, 0.44) |
NE-08 | (0.23, 0.28, 0.22) | (0.62, 0.21, 0.44) | (0.00, 0.30, 0.20) | (0.61, 0.21, 0.44) | (0.52, 0.25, 0.44) |
NE-09 | (0.32, 0.26, 0.25) | (0.66, 0.20, 0.47) | (0.62, 0.22, 0.47) | (0.00, 0.30, 0.20) | (0.58, 0.23, 0.44) |
NE-10 | (0.41, 0.25, 0.29) | (0.59, 0.22, 0.44) | (0.71, 0.19, 0.48) | (0.60, 0.23, 0.48) | (0.00, 0.30, 0.20) |
Negative Effect | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 |
NE-01 | (0.50, 0.73, 0.50) | (0.62, 0.67, 0.54) | (0.63, 0.66, 0.54) | (0.60, 0.69, 0.54) | (0.47, 0.78, 0.47) |
NE-02 | (0.46, 0.82, 0.48) | (0.39, 0.83, 0.42) | (0.48, 0.78, 0.46) | (0.45, 0.82, 0.44) | (0.37, 0.90, 0.42) |
NE-03 | (0.50, 0.79, 0.51) | (0.50, 0.79, 0.49) | (0.43, 0.79, 0.44) | (0.48, 0.81, 0.48) | (0.40, 0.88, 0.44) |
NE-04 | (0.53, 0.75, 0.52) | (0.55, 0.73, 0.51) | (0.56, 0.71, 0.50) | (0.44, 0.79, 0.45) | (0.45, 0.82, 0.46) |
NE-05 | (0.43, 0.83, 0.43) | (0.42, 0.82, 0.41) | (0.43, 0.80, 0.40) | (0.40, 0.85, 0.39) | (0.28, 0.94, 0.34) |
NE-06 | (0.54, 0.75, 0.53) | (0.54, 0.74, 0.50) | (0.56, 0.72, 0.50) | (0.53, 0.76, 0.50) | (0.44, 0.83, 0.45) |
NE-07 | (0.54, 0.76, 0.53) | (0.56, 0.74, 0.52) | (0.57, 0.72, 0.52) | (0.53, 0.77, 0.52) | (0.43, 0.84, 0.44) |
NE-08 | (0.44, 0.82, 0.47) | (0.46, 0.80, 0.44) | (0.48, 0.77, 0.44) | (0.48, 0.80, 0.47) | (0.39, 0.88, 0.41) |
NE-09 | (0.49, 0.80, 0.51) | (0.50, 0.78, 0.50) | (0.54, 0.74, 0.50) | (0.49, 0.80, 0.48) | (0.40, 0.87, 0.42) |
NE-10 | (0.51, 0.78, 0.52) | (0.52, 0.77, 0.50) | (0.55, 0.73, 0.51) | (0.53, 0.77, 0.52) | (0.44, 0.85, 0.47) |
Negative Effect | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
NE-01 | (0.40, 0.79, 0.38) | (0.60, 0.69, 0.55) | (0.66, 0.65, 0.57) | (0.64, 0.66, 0.55) | (0.59, 0.71, 0.54) |
NE-02 | (0.29, 0.93, 0.31) | (0.47, 0.82, 0.48) | (0.50, 0.78, 0.49) | (0.48, 0.79, 0.45) | (0.45, 0.85, 0.47) |
NE-03 | (0.31, 0.91, 0.33) | (0.48, 0.81, 0.49) | (0.54, 0.76, 0.52) | (0.52, 0.77, 0.50) | (0.47, 0.83, 0.48) |
NE-04 | (0.34, 0.86, 0.33) | (0.52, 0.76, 0.51) | (0.57, 0.71, 0.53) | (0.56, 0.72, 0.52) | (0.53, 0.77, 0.52) |
NE-05 | (0.26, 0.96, 0.27) | (0.40, 0.85, 0.42) | (0.44, 0.80, 0.41) | (0.44, 0.81, 0.42) | (0.38, 0.88, 0.39) |
NE-06 | (0.28, 0.88, 0.32) | (0.55, 0.75, 0.52) | (0.59, 0.71, 0.54) | (0.56, 0.73, 0.51) | (0.51, 0.79, 0.50) |
NE-07 | (0.34, 0.87, 0.34) | (0.45, 0.79, 0.47) | (0.58, 0.72, 0.54) | (0.57, 0.73, 0.53) | (0.52, 0.78, 0.52) |
NE-08 | (0.28, 0.93, 0.30) | (0.48, 0.80, 0.47) | (0.42, 0.80, 0.44) | (0.49, 0.77, 0.48) | (0.45, 0.84, 0.47) |
NE-09 | (0.31, 0.91, 0.33) | (0.51, 0.78, 0.51) | (0.54, 0.75, 0.53) | (0.43, 0.79, 0.46) | (0.48, 0.82, 0.50) |
NE-10 | (0.34, 0.88, 0.34) | (0.53, 0.77, 0.52) | (0.58, 0.72, 0.54) | (0.55, 0.75, 0.53) | (0.42, 0.83, 0.46) |
4.2. The Operational Strategies Evaluation by the SF TODIM’MC Method
- Core competencies focusing: Under normal circumstances, companies tend to take on most of the logistics that they can afford and be more cost effective. However, in post-pandemic conditions, companies should focus on their core competencies and leverage outsourced resources. The advantage of this strategy is to optimize internal resources and transfer ownership risk to third parties.
- Omni-channel distribution model: To increase the flexibility of the distribution network, omni-channel distribution models should be considered by logistics managers. Customers or manufacturers at the bottom of the supply chain will have more choices with a distribution network that combines brick-and-mortar stores, smart pick-ups points, and online shopping.
- Develop local 3PL providers: The interregional 3PLs are considered to be more comprehensive and effective in both cost and performance. However, developing local 3PLs is a safe solution for companies’ logistics problems to reduce dependence when unexpected events occur.
- Utilize temporary labor but prioritize dedicated labor: To face the challenge of labor shortages, logistics companies are suggested to develop a temporary skilled workforce that rotates between companies. However, managers are also more interested in the dedicated workforce. Special preferential policies for dedicated employees are the motivation for them to maintain service in the most difficult situations. For sustainable development, companies are suggested to strike a balance between these two workforce groups.
- Backup route: Disruption in transportation operations is a cause of direct or indirect costs incurred by companies during and after the pandemic. The backup route strategy requires larger investments but reduces response time when disruptions occur.
- Utilize outsourced vehicles with high transparency: Because of geographical restrictions during and after the pandemic, logistics companies’ transportation activities are restricted to specific regions. The consequence is an imbalance in regional transport capacity. Therefore, a strategy utilizing outsourcing according to the principles of the sharing economy is suggested. However, transparency needs to be noticed and optimized by tracking and information-sharing technologies.
- Smart systems and autonomous vehicles: The larger companies may consider unmanned transport vehicles for transportation between fixed locations. For warehouse operations, smart systems can be invested to increase accuracy and efficiency. Although this strategy requires a large investment, it promises long-term benefits because of its independence from the human factor in operations.
- Reserve capacity: The reserve capacity can be calculated by managers to increase company readiness. This strategy may result in additional costs to keep resources idle, but it helps the company reduce the risk of disruption.
4.3. Managerial Implications
5. Conclusions
5.1. Contributions
5.2. Limitation and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Negative Effect | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
---|---|---|---|---|---|---|---|---|---|---|
NE-01 | 0.00 | 0.12 | 0.11 | 0.12 | 0.07 | 0.10 | 0.11 | 0.13 | 0.12 | 0.11 |
NE-02 | 0.09 | 0.00 | 0.09 | 0.08 | 0.07 | 0.05 | 0.09 | 0.10 | 0.09 | 0.09 |
NE-03 | 0.11 | 0.09 | 0.00 | 0.09 | 0.07 | 0.06 | 0.08 | 0.11 | 0.10 | 0.08 |
NE-04 | 0.10 | 0.11 | 0.11 | 0.00 | 0.10 | 0.06 | 0.09 | 0.10 | 0.11 | 0.11 |
NE-05 | 0.10 | 0.08 | 0.08 | 0.07 | 0.00 | 0.04 | 0.07 | 0.07 | 0.09 | 0.06 |
NE-06 | 0.11 | 0.10 | 0.10 | 0.10 | 0.08 | 0.00 | 0.11 | 0.11 | 0.09 | 0.08 |
NE-07 | 0.10 | 0.12 | 0.11 | 0.10 | 0.07 | 0.06 | 0.00 | 0.11 | 0.11 | 0.10 |
NE-08 | 0.07 | 0.08 | 0.08 | 0.11 | 0.08 | 0.04 | 0.10 | 0.00 | 0.10 | 0.09 |
NE-09 | 0.09 | 0.09 | 0.12 | 0.09 | 0.07 | 0.05 | 0.11 | 0.10 | 0.00 | 0.10 |
NE-10 | 0.09 | 0.08 | 0.11 | 0.11 | 0.09 | 0.07 | 0.10 | 0.12 | 0.10 | 0.00 |
Negative Effect | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
---|---|---|---|---|---|---|---|---|---|---|
NE-01 | 0.12 | 0.07 | 0.07 | 0.07 | 0.10 | 0.08 | 0.08 | 0.06 | 0.07 | 0.07 |
NE-02 | 0.09 | 0.12 | 0.09 | 0.09 | 0.10 | 0.10 | 0.09 | 0.09 | 0.09 | 0.09 |
NE-03 | 0.08 | 0.09 | 0.12 | 0.09 | 0.10 | 0.10 | 0.09 | 0.08 | 0.08 | 0.09 |
NE-04 | 0.08 | 0.07 | 0.08 | 0.12 | 0.09 | 0.10 | 0.09 | 0.08 | 0.08 | 0.08 |
NE-05 | 0.08 | 0.09 | 0.09 | 0.10 | 0.12 | 0.11 | 0.10 | 0.09 | 0.09 | 0.10 |
NE-06 | 0.08 | 0.08 | 0.08 | 0.08 | 0.10 | 0.12 | 0.07 | 0.07 | 0.08 | 0.09 |
NE-07 | 0.08 | 0.07 | 0.08 | 0.09 | 0.09 | 0.10 | 0.12 | 0.08 | 0.08 | 0.08 |
NE-08 | 0.10 | 0.09 | 0.09 | 0.08 | 0.09 | 0.11 | 0.08 | 0.12 | 0.08 | 0.09 |
NE-09 | 0.09 | 0.09 | 0.07 | 0.09 | 0.10 | 0.10 | 0.08 | 0.08 | 0.12 | 0.09 |
NE-10 | 0.09 | 0.09 | 0.08 | 0.08 | 0.09 | 0.09 | 0.09 | 0.07 | 0.09 | 0.12 |
Negative Effect | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
---|---|---|---|---|---|---|---|---|---|---|
NE-01 | 0.04 | 0.10 | 0.10 | 0.10 | 0.08 | 0.08 | 0.10 | 0.10 | 0.10 | 0.10 |
NE-02 | 0.09 | 0.04 | 0.08 | 0.06 | 0.08 | 0.05 | 0.09 | 0.09 | 0.07 | 0.09 |
NE-03 | 0.10 | 0.09 | 0.04 | 0.08 | 0.08 | 0.06 | 0.08 | 0.10 | 0.09 | 0.08 |
NE-04 | 0.09 | 0.10 | 0.09 | 0.04 | 0.09 | 0.06 | 0.08 | 0.09 | 0.09 | 0.10 |
NE-05 | 0.09 | 0.08 | 0.07 | 0.06 | 0.04 | 0.05 | 0.08 | 0.06 | 0.08 | 0.06 |
NE-06 | 0.10 | 0.09 | 0.09 | 0.09 | 0.08 | 0.04 | 0.10 | 0.10 | 0.08 | 0.08 |
NE-07 | 0.10 | 0.10 | 0.10 | 0.10 | 0.06 | 0.06 | 0.04 | 0.10 | 0.10 | 0.09 |
NE-08 | 0.08 | 0.06 | 0.07 | 0.10 | 0.08 | 0.05 | 0.09 | 0.04 | 0.09 | 0.10 |
NE-09 | 0.09 | 0.09 | 0.10 | 0.08 | 0.06 | 0.05 | 0.10 | 0.10 | 0.04 | 0.10 |
NE-10 | 0.08 | 0.08 | 0.10 | 0.10 | 0.09 | 0.06 | 0.10 | 0.10 | 0.10 | 0.04 |
Strategy | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
---|---|---|---|---|---|---|---|---|---|---|
OS-01 | AH | SH | SL | M | M | L | AH | SL | VH | SL |
OS-02 | AL | VH | SH | VH | L | H | L | SL | AH | VL |
OS-03 | AH | AH | L | AH | L | AL | AH | M | H | SH |
OS-04 | VL | H | SH | H | VH | VH | AH | M | L | H |
OS-05 | AH | AH | H | AL | M | H | L | VLI | H | H |
OS-06 | M | H | VH | SH | AH | VH | M | M | M | VH |
OS-07 | VL | SL | SL | H | AH | SH | SH | M | M | VL |
OS-08 | AH | L | L | AH | H | VH | SL | ALI | SL | AH |
Strategy | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 |
OS-01 | (0.9, 0.1, 0.1) | (0.6, 0.4, 0.4) | (0.4, 0.6, 0.4) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) |
OS-02 | (0.1, 0.9, 0.1) | (0.8, 0.2, 0.2) | (0.6, 0.4, 0.4) | (0.8, 0.2, 0.2) | (0.3, 0.7, 0.3) |
OS-03 | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.3, 0.7, 0.3) | (0.9, 0.1, 0.1) | (0.3, 0.7, 0.3) |
OS-04 | (0.2, 0.8, 0.2) | (0.7, 0.3, 0.3) | (0.6, 0.4, 0.4) | (0.7, 0.3, 0.3) | (0.8, 0.2, 0.2) |
OS-05 | (0.9, 0.1, 0.1) | (0.9, 0.1, 0.1) | (0.7, 0.3, 0.3) | (0.1, 0.9, 0.1) | (0.5, 0.5, 0.5) |
OS-06 | (0.5, 0.5, 0.5) | (0.7, 0.3, 0.3) | (0.8, 0.2, 0.2) | (0.6, 0.4, 0.4) | (0.9, 0.1, 0.1) |
OS-07 | (0.2, 0.8, 0.2) | (0.4, 0.6, 0.4) | (0.4, 0.6, 0.4) | (0.7, 0.3, 0.3) | (0.9, 0.1, 0.1) |
OS-08 | (0.9, 0.1, 0.1) | (0.3, 0.7, 0.3) | (0.3, 0.7, 0.3) | (0.9, 0.1, 0.1) | (0.7, 0.3, 0.3) |
Strategy | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
OS-01 | (0.3, 0.7, 0.3) | (0.9, 0.1, 0.1) | (0.4, 0.6, 0.4) | (0.8, 0.2, 0.2) | (0.4, 0.6, 0.4) |
OS-02 | (0.7, 0.3, 0.3) | (0.3, 0.7, 0.3) | (0.4, 0.6, 0.4) | (0.9, 0.1, 0.1) | (0.2, 0.8, 0.2) |
OS-03 | (0.1, 0.9, 0.1) | (0.9, 0.1, 0.1) | (0.5, 0.5, 0.5) | (0.7, 0.3, 0.3) | (0.6, 0.4, 0.4) |
OS-04 | (0.8, 0.2, 0.2) | (0.9, 0.1, 0.1) | (0.5, 0.5, 0.5) | (0.3, 0.7, 0.3) | (0.7, 0.3, 0.3) |
OS-05 | (0.7, 0.3, 0.3) | (0.3, 0.7, 0.3) | (0.2, 0.8, 0.2) | (0.7, 0.3, 0.3) | (0.7, 0.3, 0.3) |
OS-06 | (0.8, 0.2, 0.2) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) | (0.8, 0.2, 0.2) |
OS-07 | (0.6, 0.4, 0.4) | (0.6, 0.4, 0.4) | (0.5, 0.5, 0.5) | (0.5, 0.5, 0.5) | (0.2, 0.8, 0.2) |
OS-08 | (0.8, 0.2, 0.2) | (0.4, 0.6, 0.4) | (0.1, 0.9, 0.1) | (0.4, 0.6, 0.4) | (0.9, 0.1, 0.1) |
Replication No. | OS-01 | OS-02 | OS-03 | OS-04 | OS-05 | OS-06 | OS-07 | OS-08 | Loss Attenuation Coefficient |
1 | 1 | 0.1219 | 0.9658 | 0.9227 | 0.8039 | 0.8879 | 0.7704 | 0 | 0.01413 |
2 | 0.9823 | 0.2217 | 1 | 0.966 | 0.832 | 0.8176 | 0.9058 | 0 | 55.97 |
3 | 0.9773 | 0.2306 | 1 | 0.967 | 0.8319 | 0.8081 | 0.9158 | 0 | 94.8 |
4 | 0.984 | 0.2187 | 1 | 0.9657 | 0.832 | 0.8208 | 0.9024 | 0 | 48.38 |
… | … | … | … | … | … | … | … | … | … |
3012 | 0.9795 | 0.2267 | 1 | 0.9666 | 0.8319 | 0.8122 | 0.9114 | 0 | 73.7 |
… | … | … | … | … | … | … | … | … | … |
9999 | 0.9818 | 0.2227 | 1 | 0.9661 | 0.832 | 0.8166 | 0.9068 | 0 | 58.75 |
10,000 | 0.9793 | 0.2271 | 1 | 0.9666 | 0.8319 | 0.8119 | 0.9118 | 0 | 75.08 |
Replication No. | OS-01 | OS-02 | OS-03 | OS-04 | OS-05 | OS-06 | OS-07 | OS-08 | Loss Attenuation Coefficient |
1 | 1 | 7 | 2 | 3 | 5 | 4 | 6 | 8 | 0.01413 |
2 | 2 | 7 | 1 | 3 | 5 | 6 | 4 | 8 | 55.97 |
3 | 2 | 7 | 1 | 3 | 5 | 6 | 4 | 8 | 94.8 |
4 | 2 | 7 | 1 | 3 | 5 | 6 | 4 | 8 | 48.38 |
… | … | … | … | … | … | … | … | … | … |
3012 | 2 | 7 | 1 | 3 | 5 | 6 | 4 | 8 | 73.7 |
… | … | … | … | … | … | … | … | … | … |
9999 | 2 | 7 | 1 | 3 | 5 | 6 | 4 | 8 | 58.75 |
10,000 | 2 | 7 | 1 | 3 | 5 | 6 | 4 | 8 | 75.08 |
References
- Zavadskas, E.K.; Turskis, Z.; Antucheviciene, J. Solution Models based on Symmetric and Asymmetric Information. Symmetry 2019, 11, 500. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Djenadic, S.; Tanasijevic, M.; Jovancic, P.; Ignjatovic, D.; Petrovic, D.; Bugaric, U. Risk Evaluation: Brief Review and Innovation Model Based on Fuzzy Logic and MCDM. Mathematics 2022, 10, 811. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. In Intuitionistic Fuzzy Sets; Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–137. [Google Scholar]
- Jerry, M.; Dongrui, W. Interval Type2 Fuzzy Sets. In Perceptual Computing: Aiding People in Making Subjective Judgments; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 35–63. [Google Scholar] [CrossRef]
- Yager, R.R. On the theory of bags. Int. J. Gen. Syst. 1986, 13, 23–37. [Google Scholar] [CrossRef]
- Smarandache, F. A Unifying Field in Logics. Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, NM, USA, 1999. [Google Scholar]
- Torra, V. Hesitant fuzzy sets. Int. J. Intell. Syst. 2010, 25, 529–539. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. Spherical fuzzy sets and spherical fuzzy TOPSIS method. J. Intell. Fuzzy Syst. 2019, 36, 337–352. [Google Scholar] [CrossRef]
- Kahneman, D. Prospect theory: An analysis of decisions under risk. Econometrica 1979, 47, 278. [Google Scholar] [CrossRef] [Green Version]
- Gomes, L.F.A.M.; Lima, M.M.P.P. TODIMI: Basics and Application to Multicriteria Ranking. Found. Comput. Decis. Sci. 1991, 16, 3–4. [Google Scholar]
- Wang, C.-N.; Nhieu, N.-L.; Dao, T.-H.; Huang, C.-C. Simulation-Based Optimized Weighting TODIM Decision-Making Approach for National Oil Company Global Benchmarking. IEEE Trans. Eng. Manag. 2022, 1–15. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, D.; Wang, X.; Zhao, X.; Liu, P. A generalized TODIM-ELECTRE II based integrated decision-making framework for technology selection of energy conservation and emission reduction with unknown weight information. Eng. Appl. Artif. Intell. 2021, 101, 104224. [Google Scholar] [CrossRef]
- Liu, P.; Teng, F. Probabilistic linguistic TODIM method for selecting products through online product reviews. Inf. Sci. 2019, 485, 441–455. [Google Scholar] [CrossRef]
- Pribićević, I.; Doljanica, S.; Momčilović, O.; Das, D.K.; Pamučar, D.; Stević, Ž. Novel extension of DEMATEL method by trapezoidal fuzzy numbers and D numbers for management of decision-making processes. Mathematics 2020, 8, 812. [Google Scholar] [CrossRef]
- Kim, D.; Kim, M. Hybrid Analysis of the Decision-Making Factors for Software Upgrade Based on the Integration of AHP and DEMATEL. Symmetry 2022, 14, 172. [Google Scholar] [CrossRef]
- Donthu, N.; Gustafsson, A. Effects of COVID-19 on business and research. J. Bus. Res. 2020, 117, 284–289. [Google Scholar] [CrossRef]
- Ivanov, D. Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case. Transp. Res. Part E Logist. Transp. Rev. 2020, 136, 101922. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development. OECD Competition Assessment Reviews: Logistics Sector in Viet Nam; Organisation for Economic Co-operation and Development: Paris, France, 2021. [Google Scholar]
- Tzeng, G.H.; Shen, K.Y. New Concepts and Trends of Hybrid Multiple Criteria Decision Making; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Shao, M.; Han, Z.; Sun, J.; Xiao, C.; Zhang, S.; Zhao, Y. A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Krishankumar, R.; Zavadskas, E.K.; Cavallaro, F.; Ravichandran, K.S. A Hesitant Fuzzy Combined Compromise Solution Framework-Based on Discrimination Measure for Ranking Sustainable Third-Party Reverse Logistic Providers. Sustainability 2021, 13, 2064. [Google Scholar] [CrossRef]
- Bakır, M.; Atalık, Ö. Application of Fuzzy AHP and Fuzzy MARCOS Approach for the Evaluation of E-Service Quality in the Airline Industry. Decis. Mak. Appl. Manag. Eng. 2021, 4, 127–152. [Google Scholar] [CrossRef]
- Chodha, V.; Dubey, R.; Kumar, R.; Singh, S.; Kaur, S. Selection of industrial arc welding robot with TOPSIS and Entropy MCDM techniques. Mater. Today Proc. 2022, 50, 709–715. [Google Scholar] [CrossRef]
- Seker, S.; Aydin, N. Assessment of hydrogen production methods via integrated MCDM approach under uncertainty. Int. J. Hydrog. Energy 2022, 47, 3171–3184. [Google Scholar] [CrossRef]
- Liang, X.; Chen, T.; Ye, M.; Lin, H.; Li, Z. A hybrid fuzzy BWM-VIKOR MCDM to evaluate the service level of bike-sharing companies: A case study from Chengdu, China. J. Clean. Prod. 2021, 298, 126759. [Google Scholar] [CrossRef]
- Kannan, D.; Moazzeni, S.; Darmian, S.m.; Afrasiabi, A. A hybrid approach based on MCDM methods and Monte Carlo simulation for sustainable evaluation of potential solar sites in east of Iran. J. Clean. Prod. 2021, 279, 122368. [Google Scholar] [CrossRef]
- Yazdani, M.; Zarate, P.; Zavadskas, E.K.; Turskis, Z. A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems. Manag. Decis. 2019, 57, 2501–2519. [Google Scholar] [CrossRef]
- Ataei, Y.; Mahmoudi, A.; Feylizadeh, M.R.; Li, D.-F. Ordinal Priority Approach (OPA) in Multiple Attribute Decision-Making. Appl. Soft Comput. 2020, 86, 105893. [Google Scholar] [CrossRef]
- Si, S.-L.; You, X.-Y.; Liu, H.-C.; Zhang, P. DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Math. Probl. Eng. 2018, 2018, 3696457. [Google Scholar] [CrossRef] [Green Version]
- Gül, S. Spherical fuzzy extension of DEMATEL (SF-DEMATEL). Int. J. Intell. Syst. 2020, 35, 1329–1353. [Google Scholar] [CrossRef]
- Youssef, A.E. An Integrated MCDM Approach for Cloud Service Selection Based on TOPSIS and BWM. IEEE Access 2020, 8, 71851–71865. [Google Scholar] [CrossRef]
- Wang, C.-N.; Pham, T.-D.T.; Nhieu, N.-L. Multi-Layer Fuzzy Sustainable Decision Approach for Outsourcing Manufacturer Selection in Apparel and Textile Supply Chain. Axioms 2021, 10, 262. [Google Scholar] [CrossRef]
- Chai, Q.; Li, H.; Tian, W.; Zhang, Y. Critical Success Factors for Safety Program Implementation of Regeneration of Abandoned Industrial Building Projects in China: A Fuzzy DEMATEL Approach. Sustainability 2022, 14, 1550. [Google Scholar] [CrossRef]
- Salimian, S.; Mousavi, S.M.; Antucheviciene, J. An Interval-Valued Intuitionistic Fuzzy Model Based on Extended VIKOR and MARCOS for Sustainable Supplier Selection in Organ Transplantation Networks for Healthcare Devices. Sustainability 2022, 14, 3795. [Google Scholar] [CrossRef]
- Kumar Joshi, D.; Awasthi, N.; Chaube, S. Probabilistic hesitant fuzzy set based MCDM method with applications in Portfolio selection process. Mater. Today Proc. 2022, 57, 2270–2275. [Google Scholar] [CrossRef]
- Kumar, A.; Luthra, S.; Mangla, S.K.; Kazançoğlu, Y. COVID-19 impact on sustainable production and operations management. Sustain. Oper. Comput. 2020, 1, 1–7. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, R.; Panchal, R.; Tiwari, M.K. Impact of COVID-19 on logistics systems and disruptions in food supply chain. Int. J. Prod. Res. 2021, 59, 1993–2008. [Google Scholar] [CrossRef]
- Nga, Y.V.T.B. Risk Management in the Supply Chain during COVID-19 Pandemic in Vietnam Rice Import-Export Enterprises. Himal. Econ. Bus. Manag. 2021, 2, 82–91. [Google Scholar] [CrossRef]
- Melkonyan, A.; Gruchmann, T.; Lohmar, F.; Kamath, V.; Spinler, S. Sustainability assessment of last-mile logistics and distribution strategies: The case of local food networks. Int. J. Prod. Econ. 2020, 228, 107746. [Google Scholar] [CrossRef]
- Vidal Vieira, J.G.; Ramos Toso, M.; da Silva, J.E.A.R.; Cabral Ribeiro, P.C. An AHP-based framework for logistics operations in distribution centres. Int. J. Prod. Econ. 2017, 187, 246–259. [Google Scholar] [CrossRef]
- Le, M.-T.; Nhieu, N.-L. A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model. Sustainability 2022, 14, 4732. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Chung, Y.-C.; Pham, H.-T. Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window. Mathematics 2021, 9, 379. [Google Scholar] [CrossRef]
- Do, M.N.; Dung, N.T. The impact of COVID-19 pandemic on logistics firms in Vietnam. Ann. Comput. Sci. Inf. Syst. 2021, 28, 99–103. [Google Scholar]
- Nguyen, H.T.X. The Effect of COVID-19 Pandemic on Financial Performance of Firms: Empirical Evidence from Vietnamese Logistics Enterprises. J. Asian Financ. Econ. Bus. 2022, 9, 177–183. [Google Scholar]
- Nguyen, H.-K.; Vu, M.-N. Assess the impact of the COVID-19 pandemic and propose solutions for sustainable development for textile enterprises: An integrated data envelopment analysis-binary logistic model approach. J. Risk Financ. Manag. 2021, 14, 465. [Google Scholar] [CrossRef]
- Sang, T.T.; Thu, N.M.; Khoi, T.H.; Huong, N.T.K.; Van Thanh, N. The Optimization of Transportation Costs in Logistics Enterprises during the COVID-19 Pandemic. ARRUS J. Math. Appl. Sci. 2021, 1, 62–71. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision-Making in a Fuzzy Environment. Manag. Sci. 1970, 17, B-141–B-164. [Google Scholar] [CrossRef]
- Grattan-Guinness, I. Fuzzy membership mapped onto intervals and many-valued quantities. Math. Log. Q. 1976, 22, 149–160. [Google Scholar] [CrossRef]
- Garibaldi, J.M.; Ozen, T. Uncertain fuzzy reasoning: A case study in modelling expert decision making. IEEE Trans. Fuzzy Syst. 2007, 15, 16–30. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophic set–a generalization of the intuitionistic fuzzy set. J. Def. Resour. Manag. 2010, 1, 107–116. [Google Scholar]
- Ashraf, S.; Abdullah, S.; Mahmood, T.; Ghani, F.; Mahmood, T. Spherical fuzzy sets and their applications in multi-attribute decision making problems. J. Intell. Fuzzy Syst. 2019, 36, 2829–2844. [Google Scholar] [CrossRef]
- Kutlu Gündoğdu, F.; Kahraman, C. A novel VIKOR method using spherical fuzzy sets and its application to warehouse site selection. J. Intell. Fuzzy Syst. 2019, 37, 1197–1211. [Google Scholar] [CrossRef]
- Kutlu Gundogdu, F.; Kahraman, C. Extension of WASPAS with Spherical Fuzzy Sets. Informatica 2019, 30, 269–292. [Google Scholar] [CrossRef] [Green Version]
- Mathew, M.; Chakrabortty, R.K.; Ryan, M.J. A novel approach integrating AHP and TOPSIS under spherical fuzzy sets for advanced manufacturing system selection. Eng. Appl. Artif. Intell. 2020, 96, 103988. [Google Scholar] [CrossRef]
- Donyatalab, Y.; Kutlu Gündoğdu, F.; Farid, F.; Seyfi-Shishavan, S.A.; Farrokhizadeh, E.; Kahraman, C. Novel spherical fuzzy distance and similarity measures and their applications to medical diagnosis. Expert Syst. Appl. 2022, 191, 116330. [Google Scholar] [CrossRef]
- Fontela, E.; Gabus, A. Events and economic forecasting models. Futures 1974, 6, 329–333. [Google Scholar] [CrossRef]
- Liu, F.; Aiwu, G.; Lukovac, V.; Vukic, M. A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model. Decis. Mak. Appl. Manag. Eng. 2018, 1, 121–130. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nhieu, N.-L.; Nguyen, H.-P.; Wang, J.-W. Simulation-Based Optimization Integrated Multiple Criteria Decision-Making Framework for Wave Energy Site Selection: A Case Study of Australia. IEEE Access 2021, 9, 167458–167476. [Google Scholar] [CrossRef]
- Ren, P.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Rodríguez, R.M.; Ren, Z.; Wei, C. A Hesitant Fuzzy Linguistic TODIM Method Based on a Score Function. Int. J. Comput. Intell. Syst. 2015, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Liang, Y.; Bao, X.; Qin, J.; Lim, M.K. China’s logistics development trends in the post COVID-19 era. Int. J. Logist. Res. Appl. 2020, 1–12. [Google Scholar] [CrossRef]
- Raj, A.; Mukherjee, A.A.; de Sousa Jabbour, A.B.L.; Srivastava, S.K. Supply Chain Management during and post-COVID-19 Pandemic: Mitigation Strategies and Practical Lessons Learned. J. Bus. Res. 2022, 142, 1125–1139. [Google Scholar] [CrossRef]
- Prataviera, L.B.; Creazza, A.; Melacini, M.; Dallari, F. Heading for Tomorrow: Resilience Strategies for Post-COVID-19 Grocery Supply Chains. Sustainability 2022, 14, 1942. [Google Scholar] [CrossRef]
- Narasimha, P.T.; Jena, P.R.; Majhi, R. Impact of COVID-19 on the Indian seaport transportation and maritime supply chain. Transp. Policy 2021, 110, 191–203. [Google Scholar] [CrossRef]
- Cai, M.; Luo, J. Influence of COVID-19 on manufacturing industry and corresponding countermeasures from supply chain perspective. J. Shanghai Jiaotong Univ. 2020, 25, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Elomri, A.; Kerbache, L.; El Omri, A. Impacts of COVID-19 on global supply chains: Facts and perspectives. IEEE Eng. Manag. Rev. 2020, 48, 153–166. [Google Scholar] [CrossRef]
- Kushwaha, P. Conceptual Reverse Logistics Model used by Online Retailers Post COVID-19 Lockdown. SAMVAD 2020, 20, 28–33. [Google Scholar] [CrossRef]
- Sudan, T.; Taggar, R. Recovering Supply Chain Disruptions in Post-COVID-19 Pandemic Through Transport Intelligence and Logistics Systems: India’s Experiences and Policy Options. Front. Future Transp. 2021, 7. [Google Scholar] [CrossRef]
- Sodhi, M.S.; Tang, C.S.; Willenson, E.T. Research opportunities in preparing supply chains of essential goods for future pandemics. Int. J. Prod. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- Paul, S.K.; Chowdhury, P. A production recovery plan in manufacturing supply chains for a high-demand item during COVID-19. Int. J. Phys. Distrib. Logist. Manag. 2020, 51, 104–125. [Google Scholar] [CrossRef]
- Mouzas, S.; Ford, D. Managing relationships in showery weather: The role of umbrella agreements. J. Bus. Res. 2006, 59, 1248–1256. [Google Scholar] [CrossRef]
- Ketchen, D.J.; Craighead, C.W. Research at the Intersection of Entrepreneurship, Supply Chain Management, and Strategic Management: Opportunities Highlighted by COVID-19. J. Manag. 2020, 46, 1330–1341. [Google Scholar] [CrossRef]
No. | Author | Year | Method | Fuzzy Sets | Other Factors |
---|---|---|---|---|---|
1 | Youssef [33] | 2020 | BWM-TOPSIS | None | |
2 | Bakir and Atalik [24] | 2021 | AHP-MARCOS | Triangular | |
3 | Kannan et al. [28] | 2021 | BWM-VIKOR | None | Simulation |
4 | Liang et al. [27] | 2021 | BWM-VIKOR | Triangular | |
5 | Liu et al. [14] | 2021 | TODIM-ELECTRE II | Hesitant | |
6 | Mishra et al. [23] | 2021 | CoCoSo | Hesitant | |
7 | Wang et al. [34] | 2021 | AHP-TOPSIS | Triangular | DEA models |
8 | Chai et al. [35] | 2022 | DEMATEL | Triangular | |
9 | Seker and Aydin [26] | 2022 | SWARA-WASPAS | Intuitionistic | |
10 | Wang et al. [13] | 2022 | BWM-TODIM | None | Simulation |
11 | Salimian et al. [36] | 2022 | VIKOR-MARCOS | Intuitionistic | |
12 | Chodha et al. [25] | 2022 | TOPSIS-Entropy | None | |
13 | Joshi et al. [37] | 2022 | TOPSIS | Hesitant | |
This study | Tai and Nhieu | 2022 | DEMATEL-TODIM’MC | Spherical | Monte Carlo Simulation |
Influence Degree | Linguistic Term | Spherical Fuzzy Parameters | ||
---|---|---|---|---|
No influence | NI | 0 | 0.3 | 0.15 |
Week influence | WI | 0.35 | 0.25 | 0.25 |
Moderate influence | MI | 0.60 | 0.2 | 0.35 |
Strong influence | SI | 0.85 | 0.15 | 0.45 |
Importance Degree | Linguistic Term | Spherical Fuzzy Parameters | ||
---|---|---|---|---|
Absolutely low | AL | 0.1 | 0.9 | 0.1 |
Very low | VL | 0.2 | 0.8 | 0.2 |
low | L | 0.3 | 0.7 | 0.3 |
Slightly low | SL | 0.4 | 0.6 | 0.4 |
Moderate | E | 0.5 | 0.5 | 0.5 |
Slightly high | SH | 0.6 | 0.4 | 0.4 |
High | H | 0.7 | 0.3 | 0.3 |
Very high | VH | 0.8 | 0.2 | 0.2 |
Absolutely high | AH | 0.9 | 0.1 | 0.1 |
Notation | Category | Negative Effect | Reference |
---|---|---|---|
NE-01 | Operation | Incurred costs | [63] |
NE-02 | Operation | The decline in warehouse capacity | [64,65] |
NE-03 | Operation | Goods volume reduction | [66] |
NE-04 | Operation | Shortage of workforce | [63,67,68] |
NE-05 | Operation | Damaged product increasing | [69] |
NE-06 | Networking | Disruption of the logistics network | [63,70] |
NE-07 | Networking | Shortage of 3PL services | [65] |
NE-08 | Networking | Trading restrictions | [68] |
NE-09 | Transportation | Uncertain delivery time | [64] |
NE-10 | Transportation | Restrictions on modes of transport | [70] |
Negative Effect | Prominence | Relation | Weight | ||||
---|---|---|---|---|---|---|---|
NE-01 | (0.992, 0.029, 0.129) | 0.735 | (0.970, 0.086, 0.239) | 0.511 | 1.246 | 0.224 | 0.131 |
NE-02 | (0.941, 0.155, 0.330) | 0.342 | (0.976, 0.069, 0.217) | 0.555 | 0.897 | −0.212 | 0.094 |
NE-03 | (0.957, 0.126, 0.285) | 0.425 | (0.981, 0.050, 0.192) | 0.603 | 1.028 | −0.178 | 0.108 |
NE-04 | (0.976, 0.066, 0.215) | 0.558 | (0.970, 0.089, 0.239) | 0.513 | 1.071 | 0.045 | 0.112 |
NE-05 | (0.903, 0.199, 0.400) | 0.213 | (0.917, 0.214, 0.384) | 0.256 | 0.469 | −0.043 | 0.049 |
NE-06 | (0.978, 0.067, 0.205) | 0.578 | (0.812, 0.318, 0.495) | 0.069 | 0.648 | 0.509 | 0.068 |
NE-07 | (0.978, 0.073, 0.208) | 0.574 | (0.973, 0.083, 0.229) | 0.532 | 1.105 | 0.042 | 0.116 |
NE-08 | (0.941, 0.135, 0.328) | 0.338 | (0.986, 0.048, 0.164) | 0.662 | 1.003 | −0.324 | 0.105 |
NE-09 | (0.961, 0.111, 0.271) | 0.451 | (0.982, 0.057, 0.190) | 0.608 | 1.059 | −0.158 | 0.111 |
NE-10 | (0.973, 0.089, 0.229) | 0.534 | (0.965, 0.119, 0.260) | 0.478 | 1.012 | 0.056 | 0.106 |
Category | Negative Effects |
---|---|
Intertwined givers | NE-01, NE-04, NE-07, and NE-10 |
Autonomous givers | NE-06 |
Intertwined receivers | NE-03, NE-08, and NE-09 |
Autonomous receivers | NE-02 and NE-05 |
Notation | Operational Strategy | Reference |
---|---|---|
OS-01 | Core competencies focusing | [64] |
OS-02 | Omni-channel distribution model | [64,71] |
OS-03 | Develop local 3PL providers | [64] |
OS-04 | Utilize temporary labor but prioritize dedicated labor | [72] |
OS-05 | Backup route | [70] |
OS-06 | Utilize of outsourced vehicles with high transparency | [64,73] |
OS-07 | Smart systems and autonomous vehicles | [39,74] |
OS-08 | Reserve capacity | [64,71] |
Strategy | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 |
OS-01 | (0.74, 0.27, 0.28) | (0.67, 0.35, 0.34) | (0.64, 0.41, 0.29) | (0.56, 0.48, 0.34) | (0.76, 0.26, 0.24) |
OS-02 | (0.39, 0.68, 0.27) | (0.49, 0.54, 0.37) | (0.70, 0.32, 0.28) | (0.52, 0.53, 0.34) | (0.47, 0.55, 0.38) |
OS-03 | (0.65, 0.38, 0.32) | (0.65, 0.40, 0.29) | (0.68, 0.36, 0.26) | (0.75, 0.26, 0.26) | (0.59, 0.43, 0.31) |
OS-04 | (0.65, 0.40, 0.23) | (0.56, 0.47, 0.33) | (0.69, 0.34, 0.28) | (0.60, 0.43, 0.29) | (0.58, 0.46, 0.31) |
OS-05 | (0.74, 0.28, 0.23) | (0.71, 0.32, 0.24) | (0.70, 0.31, 0.28) | (0.57, 0.49, 0.24) | (0.59, 0.44, 0.33) |
OS-06 | (0.51, 0.52, 0.37) | (0.63, 0.40, 0.29) | (0.63, 0.40, 0.30) | (0.55, 0.47, 0.34) | (0.65, 0.37, 0.31) |
OS-07 | (0.70, 0.34, 0.25) | (0.70, 0.33, 0.28) | (0.63, 0.41, 0.28) | (0.51, 0.51, 0.34) | (0.73, 0.31, 0.20) |
OS-08 | (0.65, 0.39, 0.29) | (0.49, 0.54, 0.35) | (0.64, 0.38, 0.30) | (0.70, 0.32, 0.32) | (0.53, 0.50, 0.31) |
Strategy | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
OS-01 | (0.64, 0.40, 0.26) | (0.68, 0.35, 0.24) | (0.62, 0.45, 0.21) | (0.58, 0.43, 0.35) | (0.65, 0.38, 0.32) |
OS-02 | (0.56, 0.48, 0.31) | (0.65, 0.39, 0.27) | (0.44, 0.58, 0.40) | (0.67, 0.36, 0.30) | (0.71, 0.31, 0.28) |
OS-03 | (0.71, 0.32, 0.21) | (0.57, 0.47, 0.32) | (0.57, 0.48, 0.32) | (0.64, 0.39, 0.30) | (0.68, 0.36, 0.24) |
OS-04 | (0.74, 0.29, 0.22) | (0.61, 0.45, 0.26) | (0.54, 0.49, 0.33) | (0.64, 0.41, 0.26) | (0.77, 0.24, 0.25) |
OS-05 | (0.68, 0.35, 0.26) | (0.61, 0.44, 0.27) | (0.50, 0.56, 0.26) | (0.51, 0.53, 0.33) | (0.63, 0.41, 0.27) |
OS-06 | (0.65, 0.39, 0.26) | (0.62, 0.43, 0.26) | (0.65, 0.39, 0.31) | (0.73, 0.30, 0.29) | (0.71, 0.34, 0.23) |
OS-07 | (0.63, 0.42, 0.27) | (0.72, 0.30, 0.28) | (0.64, 0.40, 0.30) | (0.67, 0.34, 0.33) | (0.36, 0.68, 0.35) |
OS-08 | (0.58, 0.46, 0.29) | (0.54, 0.50, 0.31) | (0.44, 0.65, 0.21) | (0.48, 0.54, 0.38) | (0.61, 0.44, 0.29) |
Strategy | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
---|---|---|---|---|---|---|---|---|---|---|
OS-01 | 0.216 | 0.111 | 0.106 | 0.028 | 0.271 | 0.127 | 0.183 | 0.105 | 0.048 | 0.105 |
OS-02 | −0.147 | −0.013 | 0.169 | −0.003 | −0.020 | 0.034 | 0.128 | −0.033 | 0.136 | 0.182 |
OS-03 | 0.105 | 0.117 | 0.163 | 0.244 | 0.066 | 0.234 | 0.040 | 0.041 | 0.110 | 0.178 |
OS-04 | 0.145 | 0.034 | 0.162 | 0.079 | 0.052 | 0.262 | 0.087 | 0.021 | 0.119 | 0.275 |
OS-05 | 0.260 | 0.210 | 0.180 | 0.047 | 0.053 | 0.171 | 0.089 | −0.031 | −0.010 | 0.109 |
OS-06 | −0.003 | 0.108 | 0.101 | 0.029 | 0.114 | 0.131 | 0.104 | 0.111 | 0.188 | 0.213 |
OS-07 | 0.191 | 0.169 | 0.101 | 0.001 | 0.261 | 0.105 | 0.200 | 0.106 | 0.117 | −0.114 |
OS-08 | 0.114 | −0.017 | 0.108 | 0.141 | 0.015 | 0.057 | 0.016 | −0.137 | −0.016 | 0.077 |
Strategy | OS-01 | OS-02 | OS-03 | OS-04 | OS-05 | OS-06 | OS-07 | OS-08 |
---|---|---|---|---|---|---|---|---|
OS-01 | 0.000 | 0.382 | 0.107 | 0.122 | 0.035 | 0.251 | 0.063 | 0.115 |
OS-02 | 0.382 | 0.000 | 0.280 | 0.268 | 0.376 | 0.153 | 0.323 | 0.269 |
OS-03 | 0.107 | 0.280 | 0.000 | 0.063 | 0.114 | 0.144 | 0.065 | 0.021 |
OS-04 | 0.122 | 0.268 | 0.063 | 0.000 | 0.108 | 0.160 | 0.059 | 0.045 |
OS-05 | 0.035 | 0.376 | 0.114 | 0.108 | 0.000 | 0.255 | 0.053 | 0.115 |
OS-06 | 0.251 | 0.153 | 0.144 | 0.160 | 0.255 | 0.000 | 0.202 | 0.140 |
OS-07 | 0.063 | 0.323 | 0.065 | 0.059 | 0.053 | 0.202 | 0.000 | 0.063 |
OS-08 | 0.115 | 0.269 | 0.021 | 0.045 | 0.115 | 0.140 | 0.063 | 0.000 |
Weight | NE-01 | NE-02 | NE-03 | NE-04 | NE-05 | NE-06 | NE-07 | NE-08 | NE-09 | NE-10 |
---|---|---|---|---|---|---|---|---|---|---|
Absolute weight | 0.131 | 0.094 | 0.108 | 0.112 | 0.049 | 0.068 | 0.116 | 0.105 | 0.111 | 0.106 |
Relative weight | 1 | 0.718 | 0.824 | 0.855 | 0.374 | 0.519 | 0.885 | 0.802 | 0.847 | 0.809 |
Strategy | OS-01 | OS-02 | OS-03 | OS-04 | OS-05 | OS-06 | OS-07 | OS-08 |
---|---|---|---|---|---|---|---|---|
OS-01 | 0.000 | 0.806 | 0.354 | 0.468 | 0.351 | 0.356 | 0.419 | 0.876 |
OS-02 | 0.149 | 0.000 | 0.098 | 0.080 | 0.207 | 0.032 | 0.226 | 0.552 |
OS-03 | 0.473 | 0.762 | 0.000 | 0.262 | 0.491 | 0.408 | 0.434 | 0.863 |
OS-04 | 0.377 | 0.733 | 0.335 | 0.000 | 0.450 | 0.416 | 0.413 | 0.868 |
OS-05 | 0.327 | 0.627 | 0.275 | 0.227 | 0.000 | 0.437 | 0.496 | 0.794 |
OS-06 | 0.164 | 0.787 | 0.325 | 0.341 | 0.416 | 0.000 | 0.320 | 0.769 |
OS-07 | 0.181 | 0.735 | 0.476 | 0.448 | 0.403 | 0.379 | 0.000 | 0.800 |
OS-08 | −0.001 | 0.361 | −0.126 | −0.015 | 0.020 | 0.180 | 0.236 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le, M.-T.; Nhieu, N.-L. A Behavior-Simulated Spherical Fuzzy Extension of the Integrated Multi-Criteria Decision-Making Approach. Symmetry 2022, 14, 1136. https://doi.org/10.3390/sym14061136
Le M-T, Nhieu N-L. A Behavior-Simulated Spherical Fuzzy Extension of the Integrated Multi-Criteria Decision-Making Approach. Symmetry. 2022; 14(6):1136. https://doi.org/10.3390/sym14061136
Chicago/Turabian StyleLe, Minh-Tai, and Nhat-Luong Nhieu. 2022. "A Behavior-Simulated Spherical Fuzzy Extension of the Integrated Multi-Criteria Decision-Making Approach" Symmetry 14, no. 6: 1136. https://doi.org/10.3390/sym14061136
APA StyleLe, M. -T., & Nhieu, N. -L. (2022). A Behavior-Simulated Spherical Fuzzy Extension of the Integrated Multi-Criteria Decision-Making Approach. Symmetry, 14(6), 1136. https://doi.org/10.3390/sym14061136