Position Prediction in Space System for Vehicles Using Artificial Intelligence
Abstract
:1. Introduction
2. Related Works
3. Text Data Analysis of Wireless Frequency for Positioning
4. Machine Learning Methodology
5. Main Equations
6. Implementation
7. Performance Evaluation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Du, J.; Barth, M.J. Next-Generation Automated Vehicle Location Systems: Positioning at the Lane Level. IEEE Trans. Intell. Transp. Syst. 2008, 9, 48–57. [Google Scholar] [CrossRef]
- Ansari, K. Cooperative Position Prediction: Beyond Vehicle-to-Vehicle Relative Positioning. IEEE Trans. Intell. Transp. Syst. 2020, 21, 1121–1130. [Google Scholar] [CrossRef]
- Banks, K.M. DATATRAK automatic vehicle location and position reporting system. In Proceedings of the Conference Record of Papers Presented at the First Vehicle Navigation and Information Systems Conference (VNIS ’89), Toronto, ON, Canada, 11–13 September 1989; pp. 214–218. [Google Scholar] [CrossRef]
- Bahr, A.; Leonard, J.J.; Martinoli, A. Dynamic positioning of beacon vehicles for cooperative underwater navigation. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Algarve, Portugal, 7–12 October 2012; pp. 3760–3767. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Shreshthi, Y.; Waghchoure, N.; Wakchaure, A. Indoor Navigation System Using Bluetooth Low Energy Beacons. In Proceedings of the 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 16–18 August 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Al-Obaidy, F.; Razfar, N.; Moeini, P.; Mohammadi, F. Wireless Positioning Network Location Prediction Based on Machine Learning Techniques. In Proceedings of the 2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), London, ON, Canada, 30 August–2 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Fan, X.; Guo, L.; Han, N.; Wang, Y.; Shi, J.; Yuan, Y. A Deep Learning Approach for Next Location Prediction. In Proceedings of the 2018 IEEE 22nd International Conference on Computer Supported Cooperative Work in Design ((CSCWD)), Nanjing, China, 9–11 May 2018; pp. 69–74. [Google Scholar] [CrossRef]
- Olaby, O.; Hamadache, M.; Soper, D.; Winship, P.; Dixon, R. Development of a Novel Railway Positioning System Using RFID Technology. Sensors 2022, 22, 2401. [Google Scholar] [CrossRef]
- Gomez-del-Hoyo, P.; del-Rey-Maestre, N.; Jarabo-Amores, M.-P.; Mata-Moya, D.; Benito-Ortiz, M.-d.-C. Improved 2D Ground Target Tracking in GPS-Based Passive Radar Scenarios. Sensors 2022, 22, 1724. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Kan, Y.; Tao, X.; Hu, Y. LiDAR Positioning Algorithm Based on ICP and Artificial Landmarks Assistance. Sensors 2021, 21, 7141. [Google Scholar] [CrossRef]
- Li, L.; Sui, X.; Lian, J.; Yu, F.; Zhou, Y. Vehicle Interaction Behavior Prediction with Self-Attention. Sensors 2022, 22, 429. [Google Scholar] [CrossRef]
- Casabianca, P.; Zhang, Y.; Martínez-García, M.; Wan, J. Vehicle Destination Prediction Using Bidirectional LSTM with Attention Mechanism. Sensors 2021, 21, 8443. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Mao, X.; Wang, Y.; Zhang, N.; Li, B. A Novel 2-D Coherent DOA Estimation Method Based on Dimension Reduction Sparse Reconstruction for Orthogonal Arrays. Sensors 2016, 16, 1496. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Xie, Q.; Yuan, Q.; Huang, H.; Li, Y. Research on a Real-Time Monitoring Method for the Wear State of a Tool Based on a Convolutional Bidirectional LSTM Model. Symmetry 2019, 11, 1233. [Google Scholar] [CrossRef] [Green Version]
- Ghaleb, M.; Subramaniam, S.; Ghaleb, S.M. An Adaptive Data Gathering Algorithm for Minimum Travel Route Planning in WSNs Based on Rendezvous Points. Symmetry 2019, 11, 1326. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Wu, H.; Li, X. Internet of Things Meets Vehicles: Sheltering In-Vehicle Network through Lightweight Machine Learning. Symmetry 2019, 11, 1388. [Google Scholar] [CrossRef] [Green Version]
- Chao, K.-W.; Hu, N.-Z.; Chao, Y.-C.; Su, C.-K.; Chiu, W.-H. Implementation of Artificial Intelligence for Classification of Frogs in Bioacoustics. Symmetry 2019, 11, 1454. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-h.; Solanki, V.S.; Baraiya, H.J.; Mitra, A.; Shah, H.; Roy, S. A Smart, Sensible Agriculture System Using the Exponential Moving Average Model. Symmetry 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Koyuncu, H.; Tomar, G.S.; Sharma, D. A New Energy Efficient Multitier Deterministic Energy-Efficient Clustering Routing Protocol for Wireless Sensor Networks. Symmetry 2020, 12, 837. [Google Scholar] [CrossRef]
- Hassan, R.; Qamar, F.; Hasan, M.K.; Aman, A.H.M.; Ahmed, A.S. Internet of Things and Its Applications: A Comprehensive Survey. Symmetry 2020, 12, 1674. [Google Scholar] [CrossRef]
- Liu, F. Majority Decision Aggregation with Binarized Data in Wireless Sensor Networks. Symmetry 2021, 13, 1671. [Google Scholar] [CrossRef]
- Al Sonosy, O.; Rady, S.; Badr, N.L.; Hashem, M. A paper of spatial machine learning for business behavior prediction in location based social networks. In Proceedings of the 2016 11th International Conference on Computer Engineering & Systems (ICCES), Cairo, Egypt, 20–21 December 2016; pp. 266–272. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, Z.; Qin, Z.; Liu, Y.; Chen, Y. Big Data Prediction in Location-Aware Wireless Caching: A Machine Learning Approach. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Yan, J.; Chen, C.; Zhang, D. Node selection method based on Markov location prediction in vehicle networking. In Proceedings of the 2018 IEEE 4th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 14–16 December 2018; pp. 754–758. [Google Scholar] [CrossRef]
- Bonaventura, C.S.; Palese, J.W.; Zarembki, A.M. Intelligent system for real-time prediction of railway vehicle response to the interaction with track geometry. In Proceedings of the 2000 ASME/IEEE Joint Railroad Conference (Cat. No.00CH37110), Newark, NJ, USA, 6 April 2000; pp. 31–45. [Google Scholar] [CrossRef]
- Alzyout, M.; Alsmirat, M.; Al-Saleh, M.I. Automated ARIMA Model Construction for Dynamic Vehicle GPS Location Prediction. In Proceedings of the 2019 Sixth International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Granada, Spain, 22–25 October 2019; pp. 380–386. [Google Scholar] [CrossRef]
- Chen, P.; Lu, Z.; Gu, J. Vehicle Travel Time Prediction Algorithm Based on Historical Data and Shared Location. In Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC, Seoul, Korea, 25–27 August 2009; pp. 1632–1637. [Google Scholar] [CrossRef]
- Chen, L.; Wei, S.; Shi, L. Research on location prediction of vehicular networks. In Proceedings of the 2009 2nd IEEE International Conference on Computer Science and Information Technology, Beijing, China, 8–11 August 2009; pp. 558–561. [Google Scholar] [CrossRef]
- Gong, X.; Manoharan, S. On predicting vehicle tracks. In Proceedings of the 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, BC, USA, 23–26 August 2011; pp. 31–36. [Google Scholar] [CrossRef]
- Pingsheng, L.; Xiaoli, X.; Bin, L.; Meng, W. The Model of Vehicle Position Estimation and Prediction Based on State-Space Approach. In Proceedings of the 2009 Second International Conference on Intelligent Computation Technology and Automation, Changsha, China, 10–11 October 2009; pp. 822–825. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-C.; Jeon, Y.-B.; Han, S.-S.; Jeong, C.-S. Position Prediction in Space System for Vehicles Using Artificial Intelligence. Symmetry 2022, 14, 1151. https://doi.org/10.3390/sym14061151
Lee W-C, Jeon Y-B, Han S-S, Jeong C-S. Position Prediction in Space System for Vehicles Using Artificial Intelligence. Symmetry. 2022; 14(6):1151. https://doi.org/10.3390/sym14061151
Chicago/Turabian StyleLee, Won-Chan, You-Boo Jeon, Seong-Soo Han, and Chang-Sung Jeong. 2022. "Position Prediction in Space System for Vehicles Using Artificial Intelligence" Symmetry 14, no. 6: 1151. https://doi.org/10.3390/sym14061151
APA StyleLee, W. -C., Jeon, Y. -B., Han, S. -S., & Jeong, C. -S. (2022). Position Prediction in Space System for Vehicles Using Artificial Intelligence. Symmetry, 14(6), 1151. https://doi.org/10.3390/sym14061151