Dynamics of Shunting Inhibitory Cellular Neural Networks with Variable Two-Component Passive Decay Rates and Poisson Stable Inputs
Abstract
:1. Introduction
2. Methods
3. Main Results
- (C1)
- The functions are -periodic, such that
- (C2)
- Functions and are Poisson stable with the common convergence sequence
- (C3)
- The Poisson number is equal to zero;
- (C4)
- ∃ such that
- (C5)
- ∃ such that if
- (C6)
- (C7)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chua, L.; Yang, L. Cellular neural networks: Applications. IEEE Trans. Circuits Syst. 1988, 35, 1273–1290. [Google Scholar] [CrossRef]
- Bouzerdoum, A.; Pinter, R. Shunting inhibitory cellular neural networks: Derivation and stability analysis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1993, 40, 215–221. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Fei, Y. Periodic Solutions for Shunting Inhibitory Cellular Neural Networks of Neutral Type with Time-Varying Delays in the Leakage Term on Time Scales. J. Appl. Math. 2014, 2014, 496396. [Google Scholar] [CrossRef]
- Huang, C.; Wen, S.; Huang, L. Dynamics of anti–periodic solutions on shunting inhibitory cellular neural networks with multi-proportional delays. Neurocomputing 2019, 357, 47–52. [Google Scholar] [CrossRef]
- Peng, G.; Li, L. Anti–periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. Nonlinear Anal. Real World Appl. 2009, 10, 2434–2440. [Google Scholar] [CrossRef]
- Ou, C. Almost periodic solutions for shunting inhibitory cellular neural networks. Nonlinear Anal. Real World Appl. 2019, 10, 2652–2658. [Google Scholar] [CrossRef]
- Li, Y.; Meng, X. Almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks of neutral type with time delays in the leakage term. Int. J. Syst. Sci. 2018, 49, 2490–2505. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C. Almost periodic solutions of shunting inhibitory cellular neural networks on time scales. Commun. Nonlinear Sci. Numer. Simul. 2018, 17, 3258–3266. [Google Scholar] [CrossRef]
- Lu, Y.; Ji, D. Pseudo almost periodic solutions for shunting inhibitory cellular neural networks with continuously distributed delays. J. Inequalities Appl. 2017, 2017, 242. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A. Pseudo Almost Periodic Solutions for SICNNs with Oscillating Leakage Coefficients and Complex Deviating Arguments. Neural Process. Lett. 2017, 45, 183–196. [Google Scholar] [CrossRef]
- Sell, G. Topological Dynamics and Ordinary Differential Equations; Van Nostrand Reinhold Company: London, UK, 1971. [Google Scholar]
- Poincare, H. New Methods of Celestial Mechanics; Dover Publications: New York, NY, USA, 1957. [Google Scholar]
- Birkhoff, G. Dynamical Systems; American Mathematical Society: Providence, RI, USA, 1927. [Google Scholar]
- Nayfeh, A.; Mook, D. Nonlinear Oscillations; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Hoppensteadt, F.; Izhikevich, E. Weakly Connected Neural Networks; Springer: New York, NY, USA, 1997. [Google Scholar]
- Fink, A. Almost Periodic Differential Equations; Springer: New York, NY, USA, 1974. [Google Scholar]
- Levitan, B.; Zhikov, V. Almost Periodic Functions and Differential Equations; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Corduneanu, C. Almost Periodic Oscillations and Waves; Springer: New York, NY, USA, 2009. [Google Scholar]
- Besicovitch, A. Almost Periodic Functions; Dover: Cambridge, UK, 1954. [Google Scholar]
- Liu, B. Almost periodic solutions for Hopfield neural networks with continuously distributed delays. Math. Comput. Simul. 2007, 73, 327–335. [Google Scholar] [CrossRef]
- Cao, J. New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. Lett. A 2003, 307, 136–147. [Google Scholar] [CrossRef]
- Zhang, L.; Du, B. Periodic solution for inertial neural networks with variable parameters. AIMS Math. 2021, 6, 13580–13591. [Google Scholar] [CrossRef]
- Xu, C.; Pang, Y.; Li, P. Anti–periodic solutions of Cohen-Grossberg shunting inhibitory cellular neural networks on time scales. J. Nonlinear Sci. Appl. 2016, 9, 2376–2388. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z. Almost periodic solutions for fuzzy cellular neural networks with multi-proportional delays. Int. J. Mach. Learn. Cybern. 2017, 8, 1323–1331. [Google Scholar] [CrossRef]
- Bender, P. Recurrent solutions to systems of ordinary differential equations. J. Differ. Equ. 1969, 5, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Bhagat, R. Poisson stability in product of dynamical systems. Int. J. Math. Math. Sci. 1987, 10, 613–614. [Google Scholar] [CrossRef] [Green Version]
- Hino, Y. Recurrent solutions for linear almost periodic systems. Funkc. Ekvacioj 1985, 28, 117–119. [Google Scholar]
- Knight, R. Recurrent and Poisson stable flows. Proc. Am. Math. Soc. 1981, 83, 49–53. [Google Scholar] [CrossRef]
- Holmes, P. Poincare, celestial mechanics, dynamical-systems theory and chaos. Phys. Rep. 1990, 193, 137–163. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Poincare chaos for a hyperbolic quasilinear system. Miskolc Math. Notes 2019, 20, 33–44. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Quasilinear differential equations with strongly unpredictable solutions. Carpathian J. Math. 2020, 36, 341–349. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Modulo periodic Poisson stable solutions of quasilinear differential equations. Entropy 2021, 23, 1535. [Google Scholar] [CrossRef] [PubMed]
- Akhmet, M.; Seilova, R.; Tleubergenova, M.; Zhamanshin, A. Shunting inhibitory cellular neural networks with strongly unpredictable oscillations. Commun. Nonlinear Sci. Numer. Simul. 2020, 89, 105287. [Google Scholar] [CrossRef]
- Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Inertial neural networks with unpredictable oscillations. Mathematics 2020, 8, 1797. [Google Scholar] [CrossRef]
- Akhmet, M.; ÇinÇin, D.A.; Tleubergenova, M.; Nugayeva, Z. Unpredictable oscillations for Hopfield–type neural networks with delayed and advanced arguments. Mathematics 2020, 9, 571. [Google Scholar] [CrossRef]
- Akhmet, M. Domain Structured Dynamics: Unpredictability, Chaos, Randomness, Fractals, Differential Equations and Neural Networks; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Shcherbakov, B.A. Classification of Poisson—stable motions. Pseudo—recurrent motions. Dokl Akad Nauk. SSSR 1962, 146, 322–324. [Google Scholar]
- Shcherbakov, B.A. Poisson stable solutions of differential equations, and topological dynamics. Differ. Uravn 1969, 5, 2144–2155. [Google Scholar]
- Cheban, D.; Liu, Z. Poisson stable motions of monotone nonautonomous dynamical systems. Sci. China Math. 2019, 62, 1391–1418. [Google Scholar] [CrossRef] [Green Version]
- Cheban, D.; Liu, Z. Periodic, quasi–periodic, almost periodic, almost automorphic, Birkhoff recurrent and Poisson stable solutions for stochastic differential equations. J. Differ. Equ. 2020, 269, 3652–3685. [Google Scholar] [CrossRef] [Green Version]
- Alligood, K.; Sauer, T.; Yorke, J. CHAOS: An Introduction to Dynamical Systems; Springer: New York, NY, USA, 1996. [Google Scholar]
- Devaney, R. An Introduction to Chaotic Dynamical Systems; Addison–Wesley: Menlo Park, CA, USA, 1990. [Google Scholar]
- Skarda, C.; Freeman, W.J. How brains make chaos in order to make sense of the world? Behav. Brain Sci. 1987, 10, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Boccaletti, S.; Grebogi, C.; Lai, Y.; Mancini, H.; Maza, D. The control of chaos: Theory and applications. Phys. Rep. 2000, 329, 103–197. [Google Scholar] [CrossRef] [Green Version]
- Wright, J. Simulation of EEG: Dynamic changes in synaptic efficacy, cerebral rhythms, and dissipative and generative activity in cortex. Biol. Cybern. 1999, 81, 131–147. [Google Scholar] [CrossRef]
- Iasemidis, L.; Sackellares, J. REVIEW: Chaos Theory and Epilepsy. Neuroscientist 1996, 2, 118–126. [Google Scholar] [CrossRef]
- Hoff, A. Chaos Control and Neural Classification. Z. Naturforschung A 1994, 49, 589–593. [Google Scholar] [CrossRef]
- Hartman, P. Ordinary Differential Equations; Birkhauser: Boston, MA, USA, 2002. [Google Scholar]
- Akhmet, M.; Fen, M. Poincare chaos and unpredictable functions. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Lu, H.; Nayak, A. Periodic time series data analysis by deep learning methodology. IEEE Access 2020, 8, 078–088. [Google Scholar] [CrossRef]
- Li, X.; Xu, F.; Zhang, J.; Wang, S. A multilayer feed forward small-world neural network controller and its application on electrohydraulic actuation system. J. Appl. Math. 2013, 1, 211–244. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, Q. Square wave analysis. In Common Waveform Analysis; Cai, K.Y., Ed.; Springer: Boston, MA, USA, 2000; pp. 13–40. [Google Scholar]
- Mohammad, U.; Yasin, M.; Yousuf, R.; Anwar, I. A novel square wave generator based on the translinear circuit scheme of second generation current controlled current conveyor–CCCII. SN Appl. Sci. 2019, 1, 587. [Google Scholar] [CrossRef] [Green Version]
- Wu, U.; Yasin, M.; Yousuf, R.; Anwar, I. Deep convolutional neural network for structural dynamic response estimation and system identification. J. Eng. Mech. Appl. Sci. 2019, 145, 04018125. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmet, M.; Tleubergenova, M.; Zhamanshin, A. Dynamics of Shunting Inhibitory Cellular Neural Networks with Variable Two-Component Passive Decay Rates and Poisson Stable Inputs. Symmetry 2022, 14, 1162. https://doi.org/10.3390/sym14061162
Akhmet M, Tleubergenova M, Zhamanshin A. Dynamics of Shunting Inhibitory Cellular Neural Networks with Variable Two-Component Passive Decay Rates and Poisson Stable Inputs. Symmetry. 2022; 14(6):1162. https://doi.org/10.3390/sym14061162
Chicago/Turabian StyleAkhmet, Marat, Madina Tleubergenova, and Akylbek Zhamanshin. 2022. "Dynamics of Shunting Inhibitory Cellular Neural Networks with Variable Two-Component Passive Decay Rates and Poisson Stable Inputs" Symmetry 14, no. 6: 1162. https://doi.org/10.3390/sym14061162
APA StyleAkhmet, M., Tleubergenova, M., & Zhamanshin, A. (2022). Dynamics of Shunting Inhibitory Cellular Neural Networks with Variable Two-Component Passive Decay Rates and Poisson Stable Inputs. Symmetry, 14(6), 1162. https://doi.org/10.3390/sym14061162