Fuzzy Rough Programming Models: An Expected Value Perspective
Abstract
:1. Introduction
2. Fuzzy Rough Theory
3. Fuzzy Rough Single-Objective Programming
3.1. General Model
3.2. Convexity Theorem
3.3. Crisp Equivalent Model
4. Fuzzy Rough Multi-Objective Programming
4.1. General Model
4.2. Convexity Theorem
4.3. Compromise Model
4.4. Crisp Equivalent Model
5. Solution
5.1. Fuzzy Rough Simulation
5.1.1. NIA-S Based Fuzzy Simulation
Algorithm 1 (NIA-S based fuzzy simulation). |
|
5.1.2. NIA-S Based Fuzzy Rough Simulation
Algorithm 2 (NIA-S based fuzzy rough simulation) |
|
5.2. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Joshi, B.C. Mathematical programs with vanishing constraints involving strongly invex functions. Numer. Algorithms 2022, in press. [Google Scholar] [CrossRef]
- Ezugwu, A.E.; Olusanya, M.O.; Govender, P. Mathematical model formulation and hybrid meta heuristic optimization approach for near-optimal blood assignment in a blood bank system. Expert Syst. Appl. 2019, 137, 74–99. [Google Scholar] [CrossRef]
- Denstad, A.; Ulsund, E.; Christiansen, M.; Hvattum, L.M.; Tirado, G. Multi-objective optimization for a strategic ATM network redesign problem. Ann. Oper. Res. 2019, 296, 7–33. [Google Scholar] [CrossRef]
- Sha, Y.; Zhang, J.; Cao, H. Multistage stochastic programming approach for joint optimization of job scheduling and material ordering under endogenous uncertainties. Eur. J. Oper. Res. 2021, 290, 886–900. [Google Scholar] [CrossRef]
- Wang, G.; Shen, Y.; Jiang, Y.; Chen, J. The Scalar Mean Chance and Expected Value of Regular Bifuzzy Variables. Symmetry 2021, 13, 1428. [Google Scholar] [CrossRef]
- Atteya, T.E.M. Rough multiple objective programming. Eur. J. Oper. Res. 2016, 248, 204–210. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Y.; Wang, G. Bifuzzy-Bilevel Programming Model: Solution and Application. Symmetry 2021, 13, 1572. [Google Scholar] [CrossRef]
- Shuai, H.; Fang, J.; Ai, X.; Tang, Y.; Wen, J.; He, H. Stochastic optimization of economic dispatch for microgrid based on approximate dynamic programming. IEEE Trans. Smart Grid 2018, 10, 2440–2452. [Google Scholar] [CrossRef] [Green Version]
- Chung, C.-K.; Chen, H.M.; Chang, C.-T.; Huang, H.-L. On fuzzy multiple objective linear programming problems. Expert Syst. Appl. 2018, 114, 552–562. [Google Scholar] [CrossRef]
- Hamzehee, A.; Yaghoobi, M.A.; Mashinchi, M. A class of multiple objective mathematical programming problems in a rough environment. Sci. Iran. 2016, 23, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Pawlak, Z. Rough set. Int. J. Inf. Comput. Sci. 1982, 11, 341–356. [Google Scholar] [CrossRef]
- Dubois, D. Rough fuzzy sets and fuzzy rough sets. Int. J. Gen. Syst. 1990, 17, 191–209. [Google Scholar] [CrossRef]
- Radzikowska, A.M.; Kerre, E.E. A comparative study of fuzzy rough sets. Fuzzy Sets Syst. 2002, 126, 137–155. [Google Scholar] [CrossRef]
- Wu, W.; Mi, J.; Zhang, W. Generalized fuzzy rough sets. Inf. Sci. 2003, 151, 263–282. [Google Scholar] [CrossRef]
- Theerens, A.; Lenz, O.U.; Cornelis, C. Choquet-based fuzzy rough sets. Int. J. Approx. Reason. 2022, 146, 62–78. [Google Scholar] [CrossRef]
- Thuy, N.N.; Wongthanavasu, S. Hybrid filter-wrapper attribute selection with alpha-level fuzzy rough sets. Expert Syst. Appl. 2022, 193, 116428. [Google Scholar] [CrossRef]
- Wu, W.-Z.; Leung, Y.; Shao, M.-W. Generalized fuzzy rough approximation operators determined by fuzzy implicators. Int. J. Approx. Reason. 2013, 54, 1388–1409. [Google Scholar] [CrossRef]
- Wu, W.-Z.; Xu, Y.-H.; Shao, M.-W.; Wang, G. Axiomatic characterizations of (S, T)-fuzzy rough approximation operators. Inf. Sci. 2016, 334, 17–43. [Google Scholar] [CrossRef]
- Ji, W.; Pang, Y.; Jia, X.; Wang, Z. Fuzzy rough sets and fuzzy rough neural networks for feature selection: A review. Wiley Iterdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1402. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhao, H. A fuzzy rough set approach to hierarchical feature selection based on Hausdorff distance. Appl. Intell. 2022, in press. [Google Scholar] [CrossRef]
- Chen, J.; Mi, J.; Lin, Y. A graph approach for fuzzy-rough feature selection. Fuzzy Sets Syst. 2020, 391, 96–116. [Google Scholar] [CrossRef]
- Parthaláin, N.M.; Jensen, R.; Diao, R. Fuzzy-rough set bireducts for data reduction. IEEE Trans. Fuzzy Syst. 2019, 28, 1840–1850. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Qu, L.; Wang, Z.; Chen, Y.; Luo, D.; Wen, C. Attribute reduction in an incomplete categorical decision information system based on fuzzy rough sets. Artif. Intell. Rev. 2022, in press. [Google Scholar] [CrossRef]
- Zhang, K.; Zhan, J.; Wu, W.; Alcantud, J.C.R. Fuzzy β-covering based (I, T)-fuzzy rough set models and applications to multi-attribute decision-making. Comput. Ind. Eng. 2019, 128, 605–621. [Google Scholar] [CrossRef]
- Liu, B. Theory and Practice of Uncertain Programming; Springer: Berlin, Germany, 2002. [Google Scholar]
- Zhao, M.; Liu, J.; Wang, K. A note on inequalities and critical values of fuzzy rough variables. J. Inequal. Appl. 2015, 1, 262. [Google Scholar] [CrossRef] [Green Version]
- Shiraz, R.K.; Charles, V.; Jalalzadeh, L. Fuzzy rough dea model: A possibility and expected value approaches. Expert Syst. Appl. 2014, 41, 334–444. [Google Scholar] [CrossRef]
- Ammar, E.S.; Eljerbi, T. On solving fuzzy rough multiobjective integer linear fractional programming problem. J. Intell. Fuzzy Syst. 2019, 37, 6499–6511. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory: An Introduction to Its Axiomatic Foundations; Springer: Berlin, Germany, 2004. [Google Scholar]
- Xu, J.; Zhao, L. A multi-objective decision-making model with fuzzy rough coefficients and its application to the inventory problem. Inf. Sci. 2010, 180, 679–696. [Google Scholar] [CrossRef]
- Liu, Y.; Miao, Y.; Pantelous, A.A.; Zhou, J.; Ji, P. On fuzzy simulations for expected values of functions of fuzzy numbers and intervals. IEEE Trans. Fuzzy Syst. 2021, 29, 1446–1459. [Google Scholar] [CrossRef]
- Liu, B.; Liu, Y. Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 2002, 10, 445–450. [Google Scholar]
- Zadeh, L.A. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1978, 1, 3–18. [Google Scholar] [CrossRef]
- Zadeh, L.A. A theory of approximate reasoning. In Mathematical Frontiers of the Social and Policy Sciences; Westview Press: Boulder, CO, USA, 1979; pp. 69–129. [Google Scholar]
- Li, X. A numerical-integration-based simulation algorithm for expected values of strictly monotone functions of ordinary fuzzy variables. IEEE Trans. Fuzzy Syst. 2014, 23, 964–972. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, F.; Wang, K. Fuzzy arithmetic on LR fuzzy numbers with applications to fuzzy programming. J. Intell. Fuzzy Syst. 2016, 30, 71–87. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, B. On minimum-risk problems in fuzzy random decision systems. Comput. Oper. Res. 2005, 32, 257–283. [Google Scholar] [CrossRef]
Algorithm | Sample Points in Fuzzy Simulation (Q) | Objective Value | CPU Time (s) | Relative Error (%) |
---|---|---|---|---|
SDA-FRS [30] | 100 | 10.9612 | 2.8314 | 0.3527 |
500 | 10.9826 | 29.4740 | 0.1582 | |
1000 | 10.9914 | 88.1874 | 0.0782 | |
2000 | 11.0057 | 335.2291 | 0.0518 | |
NIAS-FRS | 100 | 10.9781 | 0.1683 | 0.1991 |
500 | 11.0156 | 0.2351 | 0.1418 | |
1000 | 11.0082 | 0.3243 | 0.0745 | |
2000 | 10.9982 | 0.6320 | 0.0164 |
Weight Coefficient: | 0 | 0.2 | 0.4 | 0.6 | 0.8 | 1 |
---|---|---|---|---|---|---|
Optimal solution: | 3.0108 | 3.0014 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Optimal solution: | 3.9928 | 3.9991 | 6.0000 | 6.0000 | 6.0000 | 6.0000 |
: | 1.1825 | 1.1558 | −12.0227 | −11.7577 | −11.8826 | −11.9587 |
: | −24.1820 | −23.9437 | −17.8993 | −18.1397 | −18.0652 | −17.9578 |
−24.1820 | −18.9238 | −15.5486 | −14.3105 | −13.1191 | −11.9587 | |
Exact sum of weighted objective values | −24.0000 | −19.0000 | −15.6000 | −14.4000 | −13.2000 | −12.0000 |
Relative error (%) | 0.0882 | 0.1470 | 0.1338 | 0.1514 | 0.1949 | 0.0807 |
CPU time (s) | 0.4537 | 0.4536 | 0.4492 | 0.4407 | 0.4686 | 0.4521 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, G.; Wang, G.; Zhang, H.; Zheng, H. Fuzzy Rough Programming Models: An Expected Value Perspective. Symmetry 2022, 14, 1384. https://doi.org/10.3390/sym14071384
Jiang G, Wang G, Zhang H, Zheng H. Fuzzy Rough Programming Models: An Expected Value Perspective. Symmetry. 2022; 14(7):1384. https://doi.org/10.3390/sym14071384
Chicago/Turabian StyleJiang, Guanshuang, Guang Wang, Haomin Zhang, and Haoran Zheng. 2022. "Fuzzy Rough Programming Models: An Expected Value Perspective" Symmetry 14, no. 7: 1384. https://doi.org/10.3390/sym14071384
APA StyleJiang, G., Wang, G., Zhang, H., & Zheng, H. (2022). Fuzzy Rough Programming Models: An Expected Value Perspective. Symmetry, 14(7), 1384. https://doi.org/10.3390/sym14071384