The Minimum-Norm Least Squares Solutions to Quaternion Tensor Systems
Abstract
:1. Introduction
2. Preliminaries
- (i)
- ;
- (ii)
- ;
- (iii)
- ;
- (iv)
- (1)
- ;
- (2)
- ;
- (3)
- (4)
- and ;
- (5)
- and .
- (1)
- ;
- (2)
- is belong to , where , and .
3. The M–P Inverses of Block Tensors
4. The Minimum-Norm Least Squares Solutions
5. Algorithm and Numerical Example
Algorithm 1: Finding the minimum-norm least squares reducible solution of system (6) |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cecioni, F. Sopra alcune operazioni algebriche sulle matrici. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat. 1910, 11, 1–141. [Google Scholar]
- Nie, X.; Wang, Q.W.; Zhang, Y. A system of matrix equations over the quaternion algebra with applications. Algebra Colloq. 2017, 24, 233–253. [Google Scholar] [CrossRef]
- Yuan, Y.X.; Mahmoud, S.M. Least-squares solutions to the matrix equations AX = B and XC = D. Appl. Math. Comput. 2010, 216, 3120–3125. [Google Scholar]
- Hamilton, W.R. Elements of Quaternions; Longmans, Green, & Company: London, UK, 1866. [Google Scholar]
- Le Bihan, N.; Mars, J. Singular value decomposition of quaternion matrices: A new tool for vector-sensor signal processing. Signal Process. 2004, 84, 1177–1199. [Google Scholar] [CrossRef]
- Pei, S.C.; Chang, J.H.; Ding, J.J. Quaternion matrix singular value decomposition and its applications for color image processing. In Proceedings of the 2003 International Conference on Image Processing (Cat. No. 03CH37429), Barcelona, Spain, 14–17 September 2003; Volume 1, p. I-805. [Google Scholar]
- Took, C.C.; Mandic, D.P. Quaternion-valued stochastic gradient-based adaptive IIR filtering. IEEE Trans. Signal Process. 2010, 58, 3895–3901. [Google Scholar]
- Took, C.C.; Mandic, D.P. Augmented second-order statistics of quaternion random signals. Signal Process. 2011, 91, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Brazell, M.; Li, N.; Navasca, C.; Tamon, C. Solving multilinear systems via tensor inversion. SIAM J. Matrix Anal. Appl. 2013, 54, 542–570. [Google Scholar]
- Chen, Z.; Lu, L. A projection method and Kronecker product preconditioner for solving Sylvester tensor equations. Sci. China Math. 2012, 55, 1281–1292. [Google Scholar]
- Guan, Y.; Chu, D. Numerical computation for orthogonal low-rank approximation of tensors. SIAM J. Matrix Anal. Appl. 2019, 40, 1047–1065. [Google Scholar]
- Guan, Y.; Chu, M.T.; Chu, D. SVD-based algorithms for the best rank-1 approximation of a symmetric tensor. SIAM J. Matrix Anal. 2018, 39, 1095–1115. [Google Scholar]
- Guan, Y.; Chu, M.T.; Chu, D. Convergence analysis of an SVD-based algorithm for the best rank-1 tensor approximation. Linear Algebra Appl. 2018, 555, 53–69. [Google Scholar]
- Li, T.; Wang, Q.W.; Zhang, X.F. A Modified conjugate residual method and nearest kronecker product preconditioner for the generalized coupled Sylvester tensor equations. Mathematics 2022, 10, 1730. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, Q.W.; Chen, J.F.; Xie, Y.Z. An exact solution to a quaternion matrix equation with an application. Symmetry 2022, 14, 375. [Google Scholar] [CrossRef]
- Liu, L.S.; Wang, Q.W.; Mahmoud Saad, M. A Sylvester-type matrix equation over the hamilton quaternions with an application. Mathematics 2022, 10, 1758. [Google Scholar] [CrossRef]
- Mahmoud Saad, M.; Wang, Q.W. Three symmetrical systems of coupled Sylvester-like quaternion matrix equations. Symmetry 2022, 14, 550. [Google Scholar] [CrossRef]
- Qi, L. Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 2005, 40, 1302–1324. [Google Scholar] [CrossRef] [Green Version]
- Qi, L. Symmetric nonnegative tensors and copositive tensors. Linear Algebra Appl. 2013, 439, 228–238. [Google Scholar] [CrossRef]
- Qi, L.; Chen, H.; Chen, Y. Tensor Eigenvalues and Their Applications; Springer: Singapore, 2018. [Google Scholar]
- Qi, L.; Luo, Z. Tensor Analysis: Spectral Theory and Special Tensors; SIAM: Philadelphia, PA, USA, 2017. [Google Scholar]
- Sun, L.; Zheng, B.; Bu, C.; Wei, Y. Moore-Penrose inverse of tensors via Einstein product. Automatica 2016, 64, 686–698. [Google Scholar]
- Wang, R.N.; Wang, Q.W.; Liu, L.S. Solving a system of sylvester-like quaternion matrix equations. Symmetry 2022, 14, 1056. [Google Scholar] [CrossRef]
- Wei, M.; Li, Y.; Zhang, F.; Zhao, J. Quaternion Matrix Computations; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2018. [Google Scholar]
- Xu, Y.F.; Wang, Q.W.; Liu, L.S.; Mahmoud Saad, M. A constrained system of matrix equations. Comput. Appl. Math. 2022, 41, 1–24. [Google Scholar]
- Einstein, A. The formal foundation of the general theory of relativity. Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1914, 1914, 1030–1085. [Google Scholar]
- He, Z.H. The general solution to a system of coupled Sylvester-type quaternion tensor equations involving η-Hermicity. Bull. Iran. Math. Soc. 2019, 45, 1407–1430. [Google Scholar] [CrossRef]
- Kirkland, S.; Neumann, M.; Xu, J. Transition matrices for well-conditioned Markov chains. Linear Algebra Appl. 2007, 424, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Rivin, I. Walks on groups, counting reducible matrices, polynomials, and surface and free group automorphisms. Duke Math. J. 2008, 142, 353–379. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.W. On bounds of extremal eigenvalues of irreducible and m-reducible matrices. Linear Algebra Appl. 2005, 402, 29–45. [Google Scholar] [CrossRef] [Green Version]
- Xie, M.; Wang, Q.W. The reducible solution to a quaternion tensor equation. Front. Math. China 2020, 15, 1047–1070. [Google Scholar] [CrossRef]
- He, Z.H.; Navasca, C.; Wang, Q.W. Tensor decompositions and tensor equations over quaternion algebra. arXiv 2017, arXiv:1710.07552. [Google Scholar]
- Wang, Q.W.; Lv, R.; Zhang, Y. The least-squares solution with the least norm to a system of tensor equations over the quaternion algebra. Linear Multilinear Algebra 2022, 70, 1942–1962. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, M.; Wang, Q.-W.; Zhang, Y. The Minimum-Norm Least Squares Solutions to Quaternion Tensor Systems. Symmetry 2022, 14, 1460. https://doi.org/10.3390/sym14071460
Xie M, Wang Q-W, Zhang Y. The Minimum-Norm Least Squares Solutions to Quaternion Tensor Systems. Symmetry. 2022; 14(7):1460. https://doi.org/10.3390/sym14071460
Chicago/Turabian StyleXie, Mengyan, Qing-Wen Wang, and Yang Zhang. 2022. "The Minimum-Norm Least Squares Solutions to Quaternion Tensor Systems" Symmetry 14, no. 7: 1460. https://doi.org/10.3390/sym14071460
APA StyleXie, M., Wang, Q. -W., & Zhang, Y. (2022). The Minimum-Norm Least Squares Solutions to Quaternion Tensor Systems. Symmetry, 14(7), 1460. https://doi.org/10.3390/sym14071460