Special Issue Editorial “Special Functions and Polynomials”
Abstract
:Funding
Acknowledgments
Conflicts of Interest
References
- Dehesa, J.S. Entropy-Like Properties and Lq-Norms of Hypergeometric Orthogonal Polynomials: Degree Asymptotics. Symmetry 2021, 13, 1416. [Google Scholar] [CrossRef]
- Abdalla, M.; Hidan, M. Investigation of the k-Analogue of Gauss Hypergeometric Functions Constructed by the Hadamard Product. Symmetry 2021, 13, 714. [Google Scholar] [CrossRef]
- Chen, K.W. Clausen’s Series 3F2(1) with Integral Parameter Differences. Symmetry 2021, 13, 1783. [Google Scholar] [CrossRef]
- Amato, U.; Della Vecchia, B. Rational Approximation on Exponential Meshes. Symmetry 2020, 12, 1999. [Google Scholar] [CrossRef]
- Khan, N.; Aman, M.; Usman, T.; Choi, J. Legendre-Gould Hopper-Based Sheffer Polynomials and Operational Methods. Symmetry 2020, 12, 2051. [Google Scholar] [CrossRef]
- Dattoli, G.; Licciardi, S.; Pidatella, R.M. Inverse Derivative Operator and Umbral Methods for the Harmonic Numbers and Telescopic Series Study. Symmetry 2021, 13, 781. [Google Scholar] [CrossRef]
- Bednarz, U.; Wołowiec-Musiał, M. Distance Fibonacci Polynomials Part II. Symmetry 2021, 13, 1723. [Google Scholar] [CrossRef]
- Celeghini, E.; Gadella, M.; del Olmo, M. Hermite Functions and Fourier Series. Symmetry 2021, 13, 853. [Google Scholar] [CrossRef]
- Dobosz, A.; Jastrzębski, P.; Lecko, A. On Certain Differential Subordination of Harmonic Mean Related to a Linear Function. Symmetry 2021, 13, 966. [Google Scholar] [CrossRef]
- Dobosz, A. The Third-Order Hermitian Toeplitz Determinant for Alpha-Convex Functions. Symmetry 2021, 13, 1274. [Google Scholar] [CrossRef]
- Wang, C.; Xia, Y.; Tao, Y. Ordered Structures of Polynomials over Max-Plus Algebra. Symmetry 2021, 13, 1137. [Google Scholar] [CrossRef]
- Abdalla, M.; Akel, M.; Choi, J. Certain Matrix Riemann–Liouville Fractional Integrals Associated with Functions Involving Generalized Bessel Matrix Polynomials. Symmetry 2021, 13, 622. [Google Scholar] [CrossRef]
- Apelblat, A.; Mainardi, F. Application of the Efros Theorem to the Function Represented by the Inverse Laplace Transform of s−μ exp(−sν). Symmetry 2021, 13, 254. [Google Scholar] [CrossRef]
- Ricci, P.E.; Caratelli, D.; Mainardi, F. Tricomi’s Method for the Laplace Transform and Orthogonal Polynomials. Symmetry 2021, 13, 589. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, P.E. Special Issue Editorial “Special Functions and Polynomials”. Symmetry 2022, 14, 1503. https://doi.org/10.3390/sym14081503
Ricci PE. Special Issue Editorial “Special Functions and Polynomials”. Symmetry. 2022; 14(8):1503. https://doi.org/10.3390/sym14081503
Chicago/Turabian StyleRicci, Paolo Emilio. 2022. "Special Issue Editorial “Special Functions and Polynomials”" Symmetry 14, no. 8: 1503. https://doi.org/10.3390/sym14081503
APA StyleRicci, P. E. (2022). Special Issue Editorial “Special Functions and Polynomials”. Symmetry, 14(8), 1503. https://doi.org/10.3390/sym14081503