New Results on Higher-Order Differential Subordination and Superordination for Univalent Analytic Functions Using a New Operator
Abstract
:1. Introduction
2. Problem Formulation
3. Fourth-Order Differential Subordination Results Using the New Operator Hα,β,δ,ξ,γ,nf(ν)
4. Results Using the Operator for Fourth-Order Differential Superordination Hα,β,δ,ξ,γ,nf(ν)
5. Sandwich-Type Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics No. 225; CRC Press: New York, NY, USA; Basel, Switzerland; Leiden, The Netherlands, 2000. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Subordinants of differential superordinations. Complex Var. Theory Appl. 2003, 48, 815–826. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Juneja, O.P. Third-order differential inequalities in the complex plane. In Current Topics in Analytic Function Theory; World Scientific Publishing Company: Singapore; Hackensack, NJ, USA; London, UK; Hongkong, China, 1992. [Google Scholar]
- Antonino, J.A.; Miller, S.S. Third-order differential inequalities and subordination in the complex plane. Complex Var. Elliptic Equ. 2011, 56, 439–454. [Google Scholar] [CrossRef]
- Farzana, H.A.; Stephen, B.A.; Jeyaramam, M.P. Third–order differential subordination of analytic function defined by functional derivative operator. Ann. Alexandru Ioan Cuza Univ. Math. 2016, 62, 105–120. [Google Scholar]
- Jeyaraman, M.P.; Suresh, T.K. Third-order differential subordination of analytic functions. Acta. Univ. Apulensis Math. Inform. 2013, 35, 187–202. [Google Scholar]
- Juma, A.S.; Mushtaq, A.H.S.; Mohammed, A.H.F. Third-order differential subordination and superordination results for meromorphically univalent functions involving linear operator. Eur. J. Sci. Res. 2015, 132, 57–65. [Google Scholar]
- Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Subordination and superordination of the Liu-Srivastava linear operator on meromorphic functions. Bull. Malays. Math. Sci. Soc. 2008, 31, 193–207. [Google Scholar]
- Alshan, W.G.; Abbas, I.A.; Yalcin, S. New concept on fourth-order differential subordination and superordination with some results for multivalent analytic functions. J. Al-Qadisiyah Comput. Sci. Math. 2020, 12, 96–107. [Google Scholar]
- Atshan, W.G.; Battor, A.H.; Abaas, A.F.; Oros, G.I. New and extended results on fourth-order differential subordination for univalent analytic functions. Al-Qadisiyah J. Pure Sci. 2020, 25, 1–13. [Google Scholar] [CrossRef]
- Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. Some new results of differential subordinations for higher-order derivatives of multivalent functions. J. Phys. Conf. Ser. 2021, 1804, 012111. [Google Scholar] [CrossRef]
- Atshan, W.G.; Saeed, A.H.; Yalcin, S. New applications on fourth-order differential subordination for meromorphic univalent functions, Bulletin of the Inter. Math. Virtual Inst. 2022, 12, 195–204. [Google Scholar]
- Darweesh, A.M.; Atshan, W.G.; Battor, A.H. Fourth-order differential subordination and superordination results of meromorphic multivalent functions defined by multiplier transformation. Int. J. Nonlinear Anal. Appl. 2021, 12, 2297–2313. [Google Scholar]
- Mihsin, B.K.; Atshan, W.G.; Alhily, S.S.; Lupas, A.A. New results on fourth- order differential subordination and superordination for univalent analytic functions involving a linear operator. Symmetry 2022, 14, 324. [Google Scholar] [CrossRef]
- Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Differential subordination and superordination of analytic functions defined by multiplier transformation. Math. Inequal. Appl. 2009, 12, 123–139. [Google Scholar] [CrossRef]
- Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. On sandwich results of univalent functions defined by a linear operator. J. Interdiscip. Math. 2020, 23, 803–809. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T.M. Subordination and superordination of a certain integral operator on meromorphic functions. Comput. Math. Appl. 2010, 59, 3669–3678. [Google Scholar] [CrossRef]
- Atshan, W.G.; Ali, A.A.R. On some sandwich theorems of analytic functions involving Noor-Salagan operator. Adv. Math. Sci. J. 2020, 9, 8455–8467. [Google Scholar] [CrossRef]
- Atshan, W.G.; Ali, A.A.R. On Sandwich theorems results for certain univalent functions defined by generalized operators. Iraqi J. Sci. 2021, 62, 2376–2383. [Google Scholar] [CrossRef]
- Atshan, W.G.; Battor, A.H.; Abaas, A.F. Some Sandwich theorems for meromorphic univalent functions defined by new integral operator. J. Interdiscip. Math. 2021, 24, 579–591. [Google Scholar] [CrossRef]
- Atshan, W.G.; Hadi, R.A. Some differential subordination and superordination results of p-valent functions defined by differential operator. J. Phys. Conf. Ser. 2020, 1664, 012043. [Google Scholar] [CrossRef]
- Atshan, W.G.; Kulkarni, S.R. On application of differential subordination for certain subclass of meromorphically p-valent functions with positive coefficients defined by linear operator. J. Inequalities Pure Appl. Math. 2009, 10, 11. [Google Scholar]
- Gochhayat, P. Sandwich-type results for a class of functions defined by a generalized differential operator. Math. Vesink 2013, 65, 178–186. [Google Scholar]
- Kavitha, S.; Sivasubramanian, S.; Jayasankar, R. Differential subordination and superordination results for Cho-Kwon-Srivastava operator. Comput. Math. Appl. 2012, 64, 1789–1803. [Google Scholar] [CrossRef]
- Shanmugam, T.N.; Sivasubramanian, S.; Srivastava, H.M. Differential Sandwich theorems for certain subclasses of analytic functions involving multiplier transformations. Integral Transform. Spec. Funct. 2006, 17, 889–899. [Google Scholar] [CrossRef]
- Sabri, M.A.; Atshan, W.G.; El-Seidy, E. On sandwich-type results for a subclass of certain univalent functions using a new Hadamard product operator. Symmetry 2022, 14, 931. [Google Scholar] [CrossRef]
- Cotirlă, L. A differential sandwich theorem for analytic functions defined by the integral operator. Stud. Univ. Babes-Bolyal Math. 2009, 54, 13–21. [Google Scholar]
- El-Ashwah, R.M.; Aouf, M.K. Differential subordination and superordination for certain subclasses of p-valent functions. Math. Comput. Model 2010, 51, 349–360. [Google Scholar] [CrossRef]
- Cho, N.E.; Bulboacă, T.; Srivastava, H.M. A general family of integral and associated subordination and superordination properties of analytic function classes. Apple. Math. Comput. 2012, 219, 2278–2288. [Google Scholar] [CrossRef]
- Atshan, W.G.; Batter, A.H.; Abaas, A.F. On third-order differential subordination results for univalent analytic functions involving an operator. J. Phys. Conf. Ser. 2020, 1664, 012041. [Google Scholar] [CrossRef]
- Atshan, W.G.; Hassan, H.Z.; Yalcin, S. On third-order differential subordination results for univalent functions defined by differential operator. Uzb. Math. J. 2021, 62, 26–42. [Google Scholar]
- Raducanu, D. Third-order differential subordinations for analytic functions associated with generalized Mittag-Leffler functions. Mediterr. J. Math. 2017, 14, 167. [Google Scholar] [CrossRef]
- Tang, H.; Deniz, E. Third-order differential subordination results for analytic functions involving the generalized Bessel functions. Acta Math. Sci. 2014, 34, 1707–1719. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Deniz, E.; Li, S. Third-order differential superordination involving the generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
- Atshan, W.G.; Hiress, R.A.; Altınkaya, S. On third-order differential subordination and superordination properties of analytic functions defined by a generalized operator. Symmetry 2022, 14, 418. [Google Scholar] [CrossRef]
- Darweesh, A.M.; Atshan, W.G.; Battor, A.H.; Lupas, A.A. Third-order differential subordination results for analytic functions associated with a certain differential operator. Symmetry 2022, 14, 99. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Li, S.; Ma, L. Third-order differential subordination and superordination results for meromorphically multivalent functions associated with the Liu-Srivastava operator. Abstr. Appl. Anal. 2014, 2014, 11. [Google Scholar] [CrossRef]
- Gochhayat, P.; Prajapati, A. Applications of third order di_erential subordination and superordination involving generalized Struve function. Filomat 2019, 33, 3047–3059. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Magesh, N. An application of second order differential inequalities based on linear and integral operators. Int. J. Math. Sci. Eng. Appl. 2008, 2, 105–114. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theyab, S.D.; Atshan, W.G.; Lupaș, A.A.; Abdullah, H.K. New Results on Higher-Order Differential Subordination and Superordination for Univalent Analytic Functions Using a New Operator. Symmetry 2022, 14, 1576. https://doi.org/10.3390/sym14081576
Theyab SD, Atshan WG, Lupaș AA, Abdullah HK. New Results on Higher-Order Differential Subordination and Superordination for Univalent Analytic Functions Using a New Operator. Symmetry. 2022; 14(8):1576. https://doi.org/10.3390/sym14081576
Chicago/Turabian StyleTheyab, Sarab Dakhil, Waggas Galib Atshan, Alina Alb Lupaș, and Habeeb Kareem Abdullah. 2022. "New Results on Higher-Order Differential Subordination and Superordination for Univalent Analytic Functions Using a New Operator" Symmetry 14, no. 8: 1576. https://doi.org/10.3390/sym14081576
APA StyleTheyab, S. D., Atshan, W. G., Lupaș, A. A., & Abdullah, H. K. (2022). New Results on Higher-Order Differential Subordination and Superordination for Univalent Analytic Functions Using a New Operator. Symmetry, 14(8), 1576. https://doi.org/10.3390/sym14081576