Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator
Abstract
:1. Introduction
2. Preliminaries
3. Fractional Inequality of Grüss Type
4. Certain New Fractional Integral Inequalities
- (i)
- (ii)
- (iii)
- (iv)
- where for, ,
5. Chebyshev-Type Inequalities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- El Shaed, M.A. Fractional Calculus Model of Semilunar Heart Valve Vibrations. In Proceedings of the International Mathematica Symposium, London, UK, 10–13 June 2003. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Hoan, L.V.C.; Akinlar, M.A.; Inc, M.; Gomez-Aguilar, J.F.; Chu, Y.M.; Almohsen, B. A new fractional-order compartmental disease model. Alex. Eng. J. 2020, 59, 3187–3196. [Google Scholar] [CrossRef]
- Gul, N.; Bilal, R.; Algehyne, E.A.; Alshehri, M.G.; Khan, M.A.; Chu, Y.M.; Islam, S. The dynamics of fractional order Hepatitis B virus model with asymptomatic carriers. Alex. Eng. J. 2021, 60, 3945–3955. [Google Scholar] [CrossRef]
- Baleanu, D.; Güvenç, Z.B.; Machado, J.T. New Trends in Nanotechnology and Fractional Calculus Applications; Springer: New York, NY, USA, 2010. [Google Scholar]
- Kulish, V.V.; Lage, J.L. Application of fractional calculus to fluid mechanics. J. Fluids Eng. 2002, 124, 803–806. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bio-Engineering; Begell House Inc. Publishers: Danbury, CT, USA, 2006. [Google Scholar]
- Atangana, A. Application of fractional calculus to epidemiology. Fract. Dyn. 2016, 174–190, Warsaw, Poland: De Gruyter Open Poland. [Google Scholar]
- Chu, Y.M.; Bekiros, S.; Zambrano-Serrano, E.; Orozco-López, O.; Lahmiri, S.; Jahanshahi, H.; Aly, A.A. Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model. Chaos Solitons Fract. 2021, 145, 110776. [Google Scholar] [CrossRef]
- Axtell, M.; Bise, M.E. Fractional calculus application in control systems. In Proceedings of the IEEE Conference on Aerospace and Electronics, Dayton, OH, USA, 21–25 May 1990; pp. 563–566. [Google Scholar]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Aly, A.A.; Felemban, B.F.; Thounthong, P. Some Hermite-Hadamard-type fractional integral inequalities involving twice-differentiable mappings. Symmetry 2021, 13, 2209. [Google Scholar] [CrossRef]
- Rahman, G.; Abdeljawad, T.; Jarad, F.; Khan, A.; Nisar, K.S. Certain inequalities via generalized proportional Hadamard fractional integral operators. Adv. Diff. Eqs. 2019, 454, 1–10. [Google Scholar] [CrossRef]
- Rashid, S.; Abdeljawad, T.; Jarad, F.; Noor, M.N. Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 2019, 7, 807. [Google Scholar] [CrossRef]
- Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 287, 1–14. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Ahmad, H.; Tariq, M.; Kodamasingh, B.; Aydi, H.; De la Sen, M. Hermite-Hadamard type inequalities involving k-fractional operator for (h,m)-convex Functions. Symmetry 2021, 13, 1686. [Google Scholar] [CrossRef]
- Saleem, N.; Ishtiaq, U.; Guran, L.; Bota, M.F. On Graphical Fuzzy Metric Spaces with Application to Fractional Differential Equations. Fractal Fract. 2022, 6, 238. [Google Scholar] [CrossRef]
- Saleem, N.; Zhou, M.; Bashir, S.; Husnine, S.M. Some new generalizations of F-contraction type mappings that weaken certain conditions on Caputo fractional type differential equations. Aims Math. 2021, 6, 12718–12742. [Google Scholar] [CrossRef]
- Grüss, G. Uber das maximum des absoluten Betrages von . Math. Z. 1935, 39, 215–226. [Google Scholar] [CrossRef]
- Kacar, E.; Kacar, Z.; Yildirim, H. Integral inequalities for Riemann-Liouville fractional integrals of a function with respect to another function. Iran. J. Math. Sci. Inform. 2018, 13, 1–13. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.M. Hermite-Hadamard inequalities for the class of convex functions on time scale. Mathematics 2019, 7, 956. [Google Scholar] [CrossRef]
- Okubo, S.; Isihara, A. Inequality for convex functions in quantum-statistical mechanics. Physica 1972, 59, 228–240. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Fractional integral inequalities via Hadamard’s fractional integral. Abstract. Appl. Anal. 2014, 11, 563096. [Google Scholar] [CrossRef]
- Mitrinović, D.S.; Vasić, P.M. History, variations and generalisations of the Cebysev inequality and the question of some priorities. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 1974, 461/497, 1–30. Available online: http://www.jstor.org/stable/43667663 (accessed on 9 August 2022).
- Tariboon, J.; Ntouyas, S.K.; Sudsutad, W. Some new Riemann-Liouville fractional integral inequalities. Int. J. Math. Sci. 2014, 2014, 869434. [Google Scholar] [CrossRef]
- Balasubramanian, S. On the Grüss inequality for unital 2-positive linear maps. arXiv 2015, arXiv:1509.09040v3. [Google Scholar] [CrossRef]
- Izumino, S.; Pecaric, J.E. Some extensions of Grüssi’ inequality and its applications. Nihonkai Math. J. 2020, 13, 159–166. [Google Scholar]
- Butt, S.I.; Bakula, M.K.; Pecaric, D.; Pecaric, J. Jensen-Grüss inequality and its applications for the Zipf-Mandelbrot law. Math. Methods Appl. Sci. 2020, 44, 1664–1673. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Ozata, F. Grüss type inequalities for fractional integral operator involving the extended generalized Mittag-Leffler function. Appl. Comput. Math. 2020, 19, 402–414. [Google Scholar]
- Butt, S.I.; Akdemir, A.O.; Nadeem, M.; Raza, M.A. Grüss type inequalities via generalized fractional operators. Math. Methods Appl. Sci. 2021, 44, 12559–12574. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B. Some Grüss-type inequalities using generalized Katugampola fractional integral. AIMS Math. 2020, 5, 1011–1024. [Google Scholar] [CrossRef]
- Sarikaya, M.Z. A Note on Grüss type inequalities on time scales. Dyn. Syst. Appl. 2008, 17, 663–666. [Google Scholar]
- Pachpatte, B.G. A note on Chebyshev-Grüss type inequalities for diferential functions. Tamsui Oxford J. Math. Sci. 2006, 22, 29–36. [Google Scholar]
- Rashid, S.; Jarad, F.; Noor, M.A.; Noor, K.I.; Baleanu, D. On Grüss inequalities within generalized K-fractional integrals. Adv. Diff. Equ. 2020, 203, 1–18. [Google Scholar] [CrossRef]
- Dahmani, Z.; Tabharit, L.; Taf, S. New generalisation of Grüss inequality using RiemannLiouville fractional integrals. Bull. Math. Anal. Appl. 2012, 2, 92–99. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. On some new Grüss-type inequality using Hadamard fractional integral operator. J. Fract. Calc. Appl. 2014, 5, 1–10. [Google Scholar]
- Sarikaya, M.Z. On an inequality of Grüss type via variant of Pompeiu’s mean value theorem. Pure Appl. Math. Lett. 2014, 2, 26–30. [Google Scholar]
- Kalla, S.L.; Rao, A. On Grüss type inequalities for a hypergeometric fractional integral. Le Matematiche 2011, LXVI, 57–64. [Google Scholar] [CrossRef]
- Mumcu, I.; Set, E. On new Grüss type inequalities for conformable fractional integrals. TWMS J. Appl. Eng. Math. 2019, 9, 1. [Google Scholar]
- Valdes, J.E.N.; Rodriguez, J.M.; Sigarreta, J.M. New Hermite-Hadamard type inequalities involving non-conformable integral operators. Symmetry 2019, 11, 1108. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsalami, O.M.; Sahoo, S.K.; Tariq, M.; Shaikh, A.A.; Cesarano, C.; Nonlaopon, K. Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator. Symmetry 2022, 14, 1691. https://doi.org/10.3390/sym14081691
Alsalami OM, Sahoo SK, Tariq M, Shaikh AA, Cesarano C, Nonlaopon K. Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator. Symmetry. 2022; 14(8):1691. https://doi.org/10.3390/sym14081691
Chicago/Turabian StyleAlsalami, Omar Mutab, Soubhagya Kumar Sahoo, Muhammad Tariq, Asif Ali Shaikh, Clemente Cesarano, and Kamsing Nonlaopon. 2022. "Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator" Symmetry 14, no. 8: 1691. https://doi.org/10.3390/sym14081691
APA StyleAlsalami, O. M., Sahoo, S. K., Tariq, M., Shaikh, A. A., Cesarano, C., & Nonlaopon, K. (2022). Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator. Symmetry, 14(8), 1691. https://doi.org/10.3390/sym14081691