Numerical Computation of Mixed Volterra–Fredholm Integro-Fractional Differential Equations by Using Newton-Cotes Methods
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional Operators
2.2. Lagrange Interpolation
2.3. Closed Newton–Cots Formulas
2.3.1. Trapezoidal Rule
2.3.2. Simpson’s 1/3 Rule
- For odd N: , for all , and for all .
- For even N: , , for all , for all , and .
2.3.3. Midpoint Rule
3. The Solution Method
3.1. A Numerical Method Based on the Trapezoidal Rule
3.2. The Algorithm (TV-FIFDE)
Algorithm 1: TV-FIFDE |
Input: , N, a, b and the initial condition . Set: . for to N do for to N do . for to n do if then else if then . else end if end for if then else . end if for to m do for to N do , for to r do if i = 0 then . else end if end for . . end for end for end for for to do , end for for to N do for to r do if i = 0 then . else end if end for end for end for Output: |
3.3. A Numerical Method Based on the Simpson’s 1/3 Rule
3.4. The Algorithm (SV-FIFDE)
Algorithm 2: SV-FIFDE |
Input: , N, a, b and the initial condition . Set: . for to N do for to N do . for to n do if then else if r = j then . else end if end for if then else . end if for to m do for to N do , for to r do if then .▹ if N is even, use relations in (30), and use relations in (34) otherwise. else ▹ if N is even, use relations in (30), and use relations in (34) otherwise. end if end for . . end for end for end for for to do , end for for to N do for to r do if i = 0 then . ▹ if N is even, use relations in (31), and use relations in (35) otherwise. else ▹ if N is even, use relations in (31), and use relations in (35) otherwise. end if end for end for end for Output: |
3.5. A Numerical Method Based on the Midpoint Rule
3.6. The Algorithm (MV-FIFDE)
Algorithm 3: MV-FIFDE |
Input: , N, a, b and the initial condition . Set: . for to N do for to N do . for to n do if then else if then . else end if end for if then else . end if for to m do if then else if then else if then end if for to N do if then else if then else if then end if end for end for end for end for Output: |
4. Numerical Examples
5. Conclusions
- The Midpoint approach is almost more accurate than Simpson’s 1/3 and trapezoidal.
- All three techniques usually provide similar outcomes.
- The Midpoint and Simpson’s 1/3 approaches are similar, and in some cases, the Simpson’s 1/3 method gives accurate results.
- In a problem that contains Mittag–Leffler terms (see Example 3), the accuracy of the results depends on the choice N being sufficiently large (small step size h) and the number of Mittag–Leffler terms (). Due to saving time, we approximated the Mittag–Leffler into 21 terms instead of infinite terms.
- As N and are sufficiently large, the error rate decreases, and the answer approaches the exact solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FC | Fractional Calculus |
VI-DE | Volterra Integro-Differential Equations |
V-FIFDE | Mixed Volterra–Fredholm Integro-Fractional Differential Equations |
TV-FIFDE | Trapezoidal Algorithm of Mixed V-FIFDEs |
SV-FIFDE | Simpson’s 1/3 Algorithm of Mixed V-FIFDEs |
MV-FIFDE | Midpoint Algorithm of Mixed V-FIFDEs |
Appendix A. The MATLAB Codes
Appendix A.1. The Main MATLAB Codes
Listing A1. Main MATLAB Code of Trapezoidal Rule. |
Listing A2. Main MATLAB Code of Simpson’s 1/3 Rule. |
Listing A3. Main MATLAB Code of Midpiont Rule. |
Appendix A.2. The MATLAB Sub-Code and Functions
Listing A4. The Mittag–Leffler Function. |
Listing A5. The Kernels Substituter. |
References
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Panwar, V.S.; Uduman, P.S.; Gomez-Aguilar, J.F. Mathematical modeling of coronavirus disease covid-19 dynamics using cf and abc non-singular fractional derivatives. Chaos Solitons Fractals 2011, 145, 110757. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: San Diego, CA, USA, 1998. [Google Scholar]
- Ross, B. The development of fractional calculus 1695–1900. Hist. Math. 1977, 4, 75–89. [Google Scholar] [CrossRef]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Tuan, N.H.; Mohammadi, H.; Rezapour, S. A mathematical model for covid-19 transmission by using the caputo fractional derivative. Chaos Solitons Fractals 2020, 140, 110107. [Google Scholar] [CrossRef]
- Valério, D.; Machado, T.J.; Kiryakova, V. Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 2014, 17, 552–578. [Google Scholar] [CrossRef]
- Roohollahi, A.; Ghazanfari, B.; Akhavan, S. Numerical solution of the mixed volterra-fredholm integro-differential multi-term equations of fractional order. J. Comput. Appl. Math. 2008, 376, 112828. [Google Scholar] [CrossRef]
- Ahmed, S.S.; MohammedFaeq, S.J. Bessel Collocation Method for Solving Fredholm–Volterra Integro-Fractional Differential Equations of Multi-High Order in the Caputo Sense. Symmetry 2021, 13, 2354. [Google Scholar] [CrossRef]
- Al-Saif, N.S.M.; Ameen, S.A. Numerical solution of mixed volterra—Fredholm integral equation using the collocation method. Baghdad Sci. J. 2020, 17, 0849. [Google Scholar]
- Araghi, M.A.F.; Hamed, D.K. Numerical solution of the second kind singular Volterra integral equations by modified Navot-Simpson’s quadrature. Int. J. Open Probl. Compt. Math. 2008, 1, 201–2013. [Google Scholar]
- Filiz, A. A fourth-order robust numerical method for integro-differential equations. Asian J. Fuzzy Appl. Math. 2013, 1, 21–33. [Google Scholar]
- Hamasalih, S.A.; Ahmed, M.R.; Ahmed, S.S. Solution Techniques Based on Adomian and Modified Adomian Decomposition for Nonlinear Integro-Fractional Differential Equations of the Volterra-Hammerstein Type. J. Univ. Babylon Pure Appl. Sci. 2020, 28, 194–216. [Google Scholar]
- Hamasalih, S.A.; Ahmed, S.S. Numerical treatment of the most general linear volterra integro-fractional differential equations with caputo derivatives by quadrature methods. J. Math. Comput. Sci. 2012, 2, 1293–1311. [Google Scholar]
- Hasan, P.M.A.; Sulaiman, N.A. Numerical treatment of mixed volterra-fredholm integral equations using trigonometric functions and laguerre polynomials. Zanco J. Pure Appl. Sci. 2018, 30, 97–106. [Google Scholar]
- Kamoh, N.M.; Gyemang, D.G.; Soomiyol, M.C. Comparing the efficiency of Simpson’s 1/3 and 3/8 rules for the numerical solution of first order Volterra integro-differential equations. Int. J. Math. Comput. Sci. 2019, 13, 136–140. [Google Scholar]
- Raftari, B. Numerical solutions of the linear volterra integro-differential equations: Homotopy perturbation method and finite difference method. World Appl. Sci. J. 2010, 9, 7–12. [Google Scholar]
- Rihan, F.A.; Doha, E.H.; Hassan, M.I.; Kamel, N.M. Numerical treatments for volterra delay integro-differential equations. Comput. Methods Appl. Math. 2009, 9, 292–318. [Google Scholar] [CrossRef]
- Samadpour, V.; Mahaleh, M.; Ezzati, R. Numerical solution of linear fuzzy fredholm integral equations of second kind using iterative method and midpoint quadrature formula. J. Intell. Fuzzy Syst. 2017, 33, 1293–1302. [Google Scholar] [CrossRef]
- Tunç, O.; Atan, Ö.; Tunç, C.; Yao, J.C. Qualitative analyses of integro-fractional differential equations with Caputo derivatives and retardations via the Lyapunov–Razumikhin method. Axioms 2021, 10, 58. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Juan, J.T. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Ahmed, S. On System of Linear Volterra Integro-Fractional Differential Equations. Ph.D. Thesis, University of Sulaimani, Sulaymaniyah, Iraq, July 2009. [Google Scholar]
- Ahmed, S.S.; Amin, M.B. Solving Linear Volterra Integro-Fractional Differential Equations in Caputo Sense with Constant Multi-Time Retarded Delay by Laplace Transform. Zanco J. Pure Appl. Sci. 2019, 31, 80–89. [Google Scholar]
- Dzyadyk, V.K.; Shevchuk, I.A. Theory of Uniform Approximation of Functions by Polynomials; Walter de Gruyter: Berlin, Germany, 2008. [Google Scholar]
- Burden, R.L.; Faires, J.D.; Burden, A.M. Numerical Analysis; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- Zahir, D.C. Numerical Solutions for the Most General Multi-Higher Fractional Order Linear Integro-Differential Equations of Fredholm Type in Caputo Sense. Master’s Thesis, University of Sulaimani, Sulaymaniyah, Iraq, March 2017. [Google Scholar]
- Hamasalih, S.A. Some Computational Methods for Solving Linear Volterra Integro-Fractional Differential Equations. Master’s Thesis, University of Sulaimani, Sulaymaniyah, Iraq, November 2011. [Google Scholar]
- Atkinson, K.E. An Introduction to Numerical Analysis; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
Exact | Approximate Solution | |||
---|---|---|---|---|
Solution | Trapezoidal | Simpson’s 1/3 | Midpoint | |
0 | 1 | 1 | 1 | 1 |
0.1 | 1.1 | 1.099998880510545 | 1.099999705316349 | 1.099999738543476 |
0.2 | 1.2 | 1.199994735958897 | 1.199998614344383 | 1.199998770584320 |
0.3 | 1.3 | 1.299986199521266 | 1.299996367294537 | 1.299996776901128 |
0.4 | 1.4 | 1.399972052423942 | 1.399992643348527 | 1.399993472849557 |
0.5 | 1.5 | 1.499951162960837 | 1.499987144606911 | 1.499988594119893 |
0.6 | 1.6 | 1.599922511477862 | 1.599979602665742 | 1.599981902572140 |
0.7 | 1.7 | 1.699885278375619 | 1.699969801781546 | 1.699973206789032 |
0.8 | 1.8 | 1.799839004212615 | 1.799957621015360 | 1.799962399468106 |
0.9 | 1.9 | 1.899783827731431 | 1.899943096888446 | 1.899949513012665 |
1 | 2 | 1.999720778172054 | 1.999926500328053 | 1.999934787801486 |
L.S.Error | 1.731659846192182 × 10 | 1.199871274392243 × 10 | 9.44542575567171 × 10 | |
Running Time/s | 1.531900 | 1.083998 | 0.573723 |
L.S.Error | |||
---|---|---|---|
N | Trapezoidal | Simpson’s 1/3 | Midpoint |
10 | 1.731659846192182 × 10 | 1.199871274392243 × 10 | 9.44542575567171 × 10 |
20 | 1.59706048132134 × 10 | 9.71114646403669 × 10 | 5.31559621620084 × 10 |
100 | 6.01739779418656 × 10 | 2.92811067355869 × 10 | 7.00371425335641 |
200 | 5.322519055906852 × 10 | 2.413151704413131 × 10 | 3.98572790064252 × 10 |
Exact | Approximate Solution | |||
---|---|---|---|---|
Solution | Trapezoidal | Simpson’s 1/3 | Midpoint | |
1 | 0 | 0 | 0 | 0 |
1.1 | 0.001 | 0.001057187475229 | 0.001057080563776 | 0.001057808414434 |
1.2 | 0.008 | 0.001057187475229 | 0.008203307563959 | 0.008204615780975 |
1.3 | 0.027 | 0.027424847466359 | 0.027424082094401 | 0.027424404330519 |
1.4 | 0.064 | 0.064711729848793 | 0.064710462239705 | 0.064707324828548 |
1.5 | 0.125 | 0.126057277107704 | 0.126055413588837 | 0.126045784833891 |
1.6 | 0.216 | 0.217455345752341 | 0.217452806044628 | 0.217433376969525 |
1.7 | 0.343 | 0.344900250034619 | 0.344896966258718 | 0.344864386404779 |
1.8 | 0.512 | 0.514386539518467 | 0.514382455635103 | 0.514333531797560 |
1.9 | 0.729 | 0.731908898824844 | 0.731903970258117 | 0.731835830084353 |
2 | 1 | 1.003462123327615 | 1.003456316616222 | 1.003366536719375 |
L.S.Error | 3.372218807263587 × 10 | 3.360748127151794 × 10 | 3.217068140177817 × 10 | |
Running Time/s | 33.724215 | 44.857985 | 73.434670 |
L.S.Error | |||
---|---|---|---|
N | Trapezoidal | Simpson’s 1/3 | Midpoint |
10 | 2.973649696929000 × 10 | 2.828859549187800 × 10 | 2.781452375954820 × 10 |
20 | 6.255313580691000 × 10 | 6.094665228386000 × 10 | 5.921832956186230 × 10 |
100 | 1.639219388468831 × 10 | 1.629077055504340 × 10 | 1.566048582826550 × 10 |
200 | 3.372218807263587 × 10 | 3.360748127151794 × 10 | 3.217068140177817 × 10 |
Exact | Approximate Solution | |||
---|---|---|---|---|
Solution | Trapezoidal | Simpson’s 1/3 | Midpoint | |
0 | 1 | 1 | 1 | 1 |
0.1 | 0.894829081924352 | 0.894715359195566 | 0.894736324615577 | 0.894731092758491 |
0.2 | 0.778597241839830 | 0.778463865718839 | 0.778504399800840 | 0.778512152261663 |
0.3 | 0.650141192423997 | 0.650053439297660 | 0.650105228503600 | 0.650128318440008 |
0.4 | 0.508175302358730 | 0.508217404877339 | 0.508268322818041 | 0.508309294002346 |
0.5 | 0.351278729299872 | 0.351552832468086 | 0.351587958911075 | 0.351649915261491 |
0.6 | 0.177881199609491 | 0.178504449588264 | 0.178506738972602 | 0.178593362632636 |
0.7 | −0.013752707470477 | −0.012650823016870 | −0.012700071994150 | −0.012584564326513 |
0.8 | −0.225540928492468 | −0.223820712965856 | −0.223941528402110 | −0.223792441192181 |
0.9 | −0.459603111156950 | −0.457116340563048 | −0.457329844884369 | −0.457142059569808 |
1 | −0.718281828459046 | −0.714873159147915 | −0.715201393706980 | −0.714969423867113 |
L.S.Error | 2.248011363124974 × 10 | 1.883703212204261 × 10 | 2.213048214188453 × 10 | |
Running Time/s | 1.015404 | 0.935683 | 0.928798 |
L.S.Error | |||
---|---|---|---|
N | Trapezoidal | Simpson’s 1/3 | Midpoint |
20 | 2.248011363124974 × 10 | 1.883703212204261 × 10 | 2.213048214188453 × 10 |
100 | 8.492239220911016 × 10 | 6.391725685307116 × 10 | 7.017017864489802 × 10 |
200 | 1.895285546764007 × 10 | 1.407627874937719 × 10 | 1.528127122158101 × 10 |
400 | 4.137313887688308 × 10 | 3.052288381134047 × 10 | 3.292994636418602 × 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, S.S.; Rasol, H.A. Numerical Computation of Mixed Volterra–Fredholm Integro-Fractional Differential Equations by Using Newton-Cotes Methods. Symmetry 2022, 14, 1693. https://doi.org/10.3390/sym14081693
Ahmed SS, Rasol HA. Numerical Computation of Mixed Volterra–Fredholm Integro-Fractional Differential Equations by Using Newton-Cotes Methods. Symmetry. 2022; 14(8):1693. https://doi.org/10.3390/sym14081693
Chicago/Turabian StyleAhmed, Shazad Shawki, and Hiwa Abdullah Rasol. 2022. "Numerical Computation of Mixed Volterra–Fredholm Integro-Fractional Differential Equations by Using Newton-Cotes Methods" Symmetry 14, no. 8: 1693. https://doi.org/10.3390/sym14081693
APA StyleAhmed, S. S., & Rasol, H. A. (2022). Numerical Computation of Mixed Volterra–Fredholm Integro-Fractional Differential Equations by Using Newton-Cotes Methods. Symmetry, 14(8), 1693. https://doi.org/10.3390/sym14081693