(γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales
Abstract
:1. Introduction
- (i)
- For , then
- (ii)
- For , then
2. Main Results
- be time scales with
- are non-negative, nabla integrable functions defined as
- have partial - derivatives and with respect to and , respectively.
- All functions used in this section are integrable according to sense.
- are n positive nabla-integrable functions defined for
- and are positive nabla-integrable functions defined for
- and , are n real-valued, non-negative concave and supermultiplicative functions defined on
- and are positive real numbers.
- and
- and
- is a positive real number.
- are n positive functions.
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Pachpatte, B.G. A note on Hilbert type inequality. Tamkang J. Math. 1998, 29, 293–298. [Google Scholar] [CrossRef]
- Rahmat, M.R.S.; Noorani, M.S.M. A new conformable nabla derivative and its application on arbitrary time scales. Adv. Differ. Eq. 2021, 2021, 238. [Google Scholar] [CrossRef]
- Yang, B.; Wu, S.; Chen, Q. A new extension of Hardy-Hilbert’s inequality containing kernel of double power functions. Mathematics 2020, 8, 894. [Google Scholar] [CrossRef]
- Yang, B.; Wu, S.; Wang, A. A new Hilbert-type inequality with positive homogeneous kernel and its equivalent forms. Symmetry 2020, 12, 342. [Google Scholar] [CrossRef]
- Agarwal, R.; O’Regan, D.; Saker, S. Dynamic Inequalities on Time Scales; Springer: Cham, Switzerland, 2014. [Google Scholar]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhauser: Boston, MA, USA, 2001. [Google Scholar]
- Zhao, C.-J.; Cheung, W.-S. On new Hilbert-Pachpatte type integral inequalities. Taiwan. J. Math. 2010, 14, 1271–1282. [Google Scholar] [CrossRef]
- Zhao, C.-J.; Cheung, W.-S. Inverses of new Hilbert-Pachpatte-type inequalities. J. Inequalities Appl. 2006, 2006, 97860. [Google Scholar] [CrossRef]
- Bohner, M.; Svetlin, G.G. Multivariable Dynamic Calculus on Time Scales; Springer: Berlin, Germany, 2016. [Google Scholar]
- Georgiev, S.G. Integral Inequalities on Time Scales; De Gruyter: Berlin, Germany, 2020. [Google Scholar]
- Guseinov, G.S.; Kaymakcalan, B. Basics of Riemann delta and nabla integration on time scales. J. Differ. Eq. Appl. 2002, 8, 1001–1017. [Google Scholar] [CrossRef]
- Gulsen, T.; Jadlovská, I.; Yilmaz, E. On the number of eigenvalues for parameter-dependent diffusion problem on time scales. Math. Methods Appl. Sci. 2021, 44, 985–992. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Awrejcewicz, J. Novel Fractional Dynamic Hardy–Hilbert-Type Inequalities on Time Scales with Applications. Mathematics 2021, 9, 2964. [Google Scholar] [CrossRef]
- Pachpatte, B.G. On some new inequalities similar to Hilbert’s inequality. J. Math. Anal. Appl. 1998, 226, 166–179. [Google Scholar] [CrossRef]
- Handley, G.D.; Koliha, J.J.; Pecaric, J. A Hilbert type inequality. Tamkang J. Math. 2000, 31, 311–316. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Deeb, A.A.; Baleanu, D.; Awrejcewicz, J. (γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales. Symmetry 2022, 14, 1714. https://doi.org/10.3390/sym14081714
El-Deeb AA, Baleanu D, Awrejcewicz J. (γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales. Symmetry. 2022; 14(8):1714. https://doi.org/10.3390/sym14081714
Chicago/Turabian StyleEl-Deeb, Ahmed A., Dumitru Baleanu, and Jan Awrejcewicz. 2022. "(γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales" Symmetry 14, no. 8: 1714. https://doi.org/10.3390/sym14081714
APA StyleEl-Deeb, A. A., Baleanu, D., & Awrejcewicz, J. (2022). (γ,a)-Nabla Reverse Hardy–Hilbert-Type Inequalities on Time Scales. Symmetry, 14(8), 1714. https://doi.org/10.3390/sym14081714