Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond
Abstract
:1. Introduction
2. Classical Dynamical Semigroups
- 1.
- 2.
- 3.
3. Quantum Dynamical Semigroups
- shall refer to the complex vector space of all linear operators on with an operator norm for defined by , where, by , we mean the Hermitian transpose of A (this norm is often referred to as the Hilbert–Schmidt norm, and for this reason, there is an abbreviation “HS” in the subscript of the norm);
- shall refer to the real Banach space of self-adjoint (Hermitian) operators on , i.e., ;
- shall refer to the cone of all positive semi-definite operators within (an operator A is called positive semi-definite (denoted by ) if and only if for all ), i.e., ;
- shall refer to the vector space of trace class operators (A is said to be a trace class operator if ). If , then the vector spaces and are isomorphic. However, they are not identical, because the norm is defined in different ways.
- 1.
- 2.
- 3.
- 4.
- 1.
- 2.
- 3.
- 4.
- .
4. Positive and Completely Positive Maps
- 1.
- is completely positive for all ;
- 2.
- is trace-preserving for all ;
- 3.
- .
5. Dynamics of Closed Quantum Systems
6. Evolution of Open Quantum Systems
6.1. Reduced Dynamics of Open Quantum Systems Evolution
- First crucial assumption claims that the coupling between the system and the environment is weak and, therefore, the quantum state of the environment does not change in time and can be simply denoted by .
- The other important assumption claims that there is no initial correlation between the system and its environment, i.e., .
- One may consider the initial state of environment+system and apply to it unitary evolution. In order to obtain the evolution of the system in question, it is required to perform the partial trace as indicated in (29) to eliminate the degrees of freedom related to the environment.
- One may reduce the initial environment+system state and apply a dynamical map only to the system of interest (see (22)).
6.2. Local in Time Approach to Open Quantum Systems Evolution
6.3. Nonlocal in Time Approach to Open Quantum Systems Evolution
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BLP | Breuer–Lane–Piilo |
CP | completely positive |
CPTP | completely positive and trace preserving |
GKSL | Gorini–Kossakowski–Sudarshan–Lindblad |
NMD | Non-Markovianity degree |
TCL | time-convolutionless |
UDM | universal dynamical map |
References
- Redfield, A.G. On the Theory of Relaxation Processes. IBM J. Res. Dev. 1957, 1, 19–32. [Google Scholar]
- Haag, R.; Kastler, D. An Algebraic Approach to Quantum Field Theory. J. Math. Phys. 1964, 5, 848–861. [Google Scholar] [CrossRef]
- Hellwig, K.-E.; Kraus, K. Pure Operations and Measurements. Commun. Math. Phys. 1969, 11, 214–220. [Google Scholar] [CrossRef]
- Hellwig, K.-E.; Kraus, K. Pure Operations and Measurements II. Commun. Math. Phys. 1970, 16, 142–147. [Google Scholar] [CrossRef]
- Kossakowski, A. On quantum statistical mechanics of non-Hamiltonian systems. Rep. Math. Phys. 1972, 3, 247–274. [Google Scholar] [CrossRef]
- Haake, F. Statistical treatment of open systems by generalized master equations. Springer Tracts Mod. Phys. 1973, 66, 98–168. [Google Scholar]
- Davis, E.B. Quantum Theory of Open Systems; Academic Press: London, UK, 1976. [Google Scholar]
- Gorini, V.; Kossakowski, A.; Sudarshan, E.C.G. Completely Positive Dynamical Semigroups of N-level Systems. J. Math. Phys. 1976, 17, 821–825. [Google Scholar] [CrossRef]
- Lindblad, G. On the generators of quantum dynamical semigroups. Commun. Math. Phys. 1976, 48, 119–130. [Google Scholar] [CrossRef]
- Kraus, K. Operations and effects in the Hilbert space formulation of quantum mechanics. In Foundations of Quantum Mechanics and Ordered Linear Spaces; Hartkämper, A., Neumann, H., Eds.; Springer: Berlin/Heidelberg, Germany, 1974; pp. 206–229. [Google Scholar]
- Kraus, K. States, Effects and Operations, Fundamental Notions of Quantum Theory; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Bellman, R. Introduction to Matrix Analysis, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1997. [Google Scholar]
- Jacobs, K. Discrete Stochastics. A Series of Advanced Textbooks in Mathematics; Birkhäuser Verlag Basel: Berlin, Germany, 1992; pp. 19–63. [Google Scholar]
- Ingarden, R.S. Information Theory and Thermodynamics of Light Part II. Principles of Information Thermodynamics. Fortschr. Phys. 1965, 13, 755–805. [Google Scholar] [CrossRef]
- Stone, M.H. The Theory of Representations of Boolean Algebras. Trans. Amer. Math. Soc. 1936, 40, 37–111. [Google Scholar]
- Engel, K.-J.; Nagel, R. One-Parameter Semigroups for Linear Evolution Equations; Springer: New York, NY, USA, 2000. [Google Scholar]
- Jamiołkowski, A. On Some Aspects of Observability of Stochastic Systems. Open Syst. Inf. Dyn. 2000, 7, 255–276. [Google Scholar] [CrossRef]
- Kolmogorov, A. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 1931, 104, 415–458. [Google Scholar] [CrossRef]
- Norris, J.R. Markov Chains; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Thingna, J.; Manzano, D. Degenerated Liouvillians and steady-state reduced density matrices. Chaos 2021, 31, 073114. [Google Scholar] [CrossRef] [PubMed]
- Alicki, R.; Lendi, K. Quantum Dynamical Semigroups and Applications; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- von Neumann, J. Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Gött. Nach. 1927, 1, 245–272. [Google Scholar]
- Landau, L. Das Dampfungsproblem in der Wellenmechanik. Z. Phys. 1927, 45, 430–441. [Google Scholar] [CrossRef]
- James, D.F.V.; Kwiat, P.G.; Munro, W.J.; White, A.G. Measurement of qubits. Phys. Rev. A 2001, 64, 052312. [Google Scholar] [CrossRef] [Green Version]
- Toninelli, E.; Ndagano, B.; Valles, A.; Sephton, B.; Nape, I.; Ambrosio, A.; Capasso, F.; Padgettm, M.j.; Forbes, A. Concepts in Quantum State Tomography and Classical Implementation with Intense Light: A Tutorial. Adv. Opt. Photonics 2019, 11, 67–134. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Jamiołkowski, A. Fusion Frames and Dynamics of Open Quantum Systems. In Quantum Optics and Laser Experiments; Lyagushyn, S., Ed.; InTech: Rijeka, Croatia, 2012; pp. 67–84. [Google Scholar]
- Yosida, K. Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Springer: New York, NY, USA, 2011. [Google Scholar]
- Spohn, H. Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 1980, 52, 569–615. [Google Scholar] [CrossRef]
- Stinespring, W.F. Positive functions on C*-algebras. Proc. Amer. Math. Soc. 1955, 6, 211–216. [Google Scholar]
- Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of Mixed States: Necessary and Sufficient Conditions. Phys. Lett. A 1996, 223, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865–942. [Google Scholar] [CrossRef] [Green Version]
- Benatti, F.; Floreanini, R. Open Quantum Dynamics: Complete Positivity and Entanglement. Int. J. Mod. Phys. B 2005, 19, 3063. [Google Scholar] [CrossRef] [Green Version]
- Rivas, Á.; Huelga, S.F. Open Quantum Systems. An Introduction; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Breuer, H.-P.; Laine, E.-M.; Piilo, J.; Vacchini, B. Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 2016, 88, 021002. [Google Scholar] [CrossRef] [Green Version]
- Vega, I.; Alonso, D. Dynamics of non-Markovian open quantum systems. Rev. Mod. Phys. 2017, 89, 015001. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, M. Characterising Completely Positive Elementary Operators. Bull. Lond. Math. Soc. 1998, 30, 603–610. [Google Scholar] [CrossRef]
- Choi, M.-D. Completely positive linear maps on complex matrices. Linear Algebra Appl. 1975, 10, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Chruściński, D. On Time-Local Generators of Quantum Evolution. Open Syst. Inf. Dyn. 2014, 21, 1440004. [Google Scholar] [CrossRef] [Green Version]
- Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys. 1972, 3, 275–278. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G.; Mathews, P.M.; Rau, J. Stochastic Dynamics of Quantum-Mechanical Systems. Phys. Rev. 1961, 121, 920. [Google Scholar] [CrossRef]
- Salgado, D.; Sanchez-Gomez, J.L.; Ferrero, M. Evolution of any finite open quantum system always admits a Kraus-type representation, although it is not always completely positive. Phys. Rev. A 2004, 70, 054102. [Google Scholar] [CrossRef]
- Tong, D.M.; Kwek, L.C.; Oh, C.H.; Chen, J.-L.; Ma, L. Operator-sum representation of time-dependent density operators and its applications. Phys. Rev. A 2004, 69, 054102. [Google Scholar] [CrossRef] [Green Version]
- Breuer, H.-P.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: New York, NY, USA, 2002. [Google Scholar]
- Blum, K. Density Matrix Theory and Applications, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Schrödinger, E. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev. 1926, 28, 1049–1070. [Google Scholar] [CrossRef]
- Pechukas, P. Reduced Dynamics Need Not Be Completely Positive. Phys. Rev. Lett. 1994, 73, 1060. [Google Scholar] [CrossRef]
- Shaji, A.; Sudarshan, E.C.G. Who’s afraid of not completely positive maps? Phys. Lett. A 2005, 341, 48–54. [Google Scholar] [CrossRef]
- Jang, S.; Cao, J.; Silbey, R.J. Fourth-order quantum master equation and its Markovian bath limit. J. Chem. Phys. 2002, 116, 2705. [Google Scholar] [CrossRef] [Green Version]
- Thingna, J.; Zhou, H.; Wang, J.-S. Improved Dyson series expansion for steady-state quantum transport beyond the weak coupling limit: Divergences and resolution. J. Chem. Phys. 2014, 141, 194101. [Google Scholar] [CrossRef] [Green Version]
- Tanimura, Y.; Kubo, R. Time Evolution of a Quantum System in Contact with a Nearly Gaussian-Markoffian Noise Bath. Phys. Soc. Jpn. 1989, 58, 101–114. [Google Scholar] [CrossRef]
- Makri, N.; Makarov, D.E. Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory. J. Chem. Phys. 1995, 102, 4600. [Google Scholar] [CrossRef]
- Alipour, S.; Rezakhani, A.T.; Babu, A.P.; Mølmer, K.; Möttönen, M.; Ala-Nissila, T. Correlation-Picture Approach to Open-Quantum-System Dynamics. Phys. Rev. X 2020, 10, 041024. [Google Scholar] [CrossRef]
- Chruściński, D.; Pascazio, S. A Brief History of the GKLS Equation. Open Syst. Inf. Dyn. 2017, 24, 1740001. [Google Scholar] [CrossRef]
- Banks, T.; Susskind, L.; Peskin, M.E. Difficulties for the Evolution of Pure States Into Mixed States. Nucl. Phys. B 1984, 244, 125–134. [Google Scholar] [CrossRef]
- Manzano, D. A short introduction to the Lindblad master equation. AIP Adv. 2020, 10, 025106. [Google Scholar] [CrossRef]
- Franke, V.A. On the general form of the dynamical transformation of density matrices. Theor. Math. Phys. 1976, 27, 406–413. [Google Scholar] [CrossRef]
- Andrianov, A.A.; Ioffe, M.V.; Izotova, E.A.; Novikov, O.O. The Franke-Gorini-Kossakowski-Lindblad–Sudarshan (FGKLS) Equation for Two-Dimensional Systems. Symmetry 2022, 14, 754. [Google Scholar] [CrossRef]
- Neudecker, H. A Note on Kronecker Matrix Products and Matrix Equation Systems. SIAM J. Appl. Math. 1969, 17, 603–606. [Google Scholar] [CrossRef]
- Hartwig, R.E. AX−XB = C, Resultants and Generalized Inverses. SIAM J. Appl. Math. 1975, 28, 154–183. [Google Scholar] [CrossRef]
- Henderson, H.V.; Searle, S.R. The vec-permutation matrix, the vec operator and Kronecker products: A review. Linear Multilinear A. 1981, 9, 271–288. [Google Scholar] [CrossRef]
- Jamiołkowski, A. The minimal Number of Operators for Observability of N-level Quantum Systems. Int. J. Theor. Phys. 1983, 22, 369–376. [Google Scholar] [CrossRef]
- Czerwinski, A. Optimal evolution models for quantum tomography. J. Phys. A Math. Theor. 2016, 49, 075301. [Google Scholar] [CrossRef] [Green Version]
- Egger, D.J.; Wilhelm, F.K. Optimal control of a quantum measurement. Phys. Rev. A 2014, 90, 052331. [Google Scholar] [CrossRef] [Green Version]
- Chruściński, D.; Kossakowski, A. Non-Markovian Quantum Dynamics: Local versus Nonlocal. Phys. Rev. Lett. 2010, 104, 070406. [Google Scholar] [CrossRef] [Green Version]
- Dyson, F.J. The S matrix in quantum electrodynamics. Phys. Rev. 1949, 75, 1736–1755. [Google Scholar] [CrossRef]
- Kamizawa, T. On Functionally Commutative Quantum Systems. Open Syst. Inf. Dyn. 2015, 22, 1550020. [Google Scholar] [CrossRef] [Green Version]
- Czerwinski, A. Open quantum systems integrable by partial commutativity. Phys. Rev. A 2020, 102, 062423. [Google Scholar] [CrossRef]
- Breuer, H.-P. Genuine quantum trajectories for non-Markovian processes. Phys. Rev. A 2004, 70, 012106. [Google Scholar] [CrossRef] [Green Version]
- Grigoriu, A.; Rabitz, H.; Turinici, G. Controllability Analysis of Quantum Systems Immersed within an Engineered Environment. J. Math. Chem. 2013, 51, 1548–1560. [Google Scholar] [CrossRef] [Green Version]
- Breuer, H.-P.; Laine, E.-M.; Piilo, J. Measure for the Degree of Non-Markovian Behavior of Quantum Processes in Open Systems. Phys. Rev. Lett. 2009, 103, 210401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.M.; Eisert, J.; Cubitt, T.S.; Cirac, J.I. Assessing Non-Markovian Quantum Dynamics. Phys. Rev. Lett. 2008, 101, 150402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolf, M.M.; Cirac, J.I. Dividing Quantum Channels. Commun. Math. Phys. 2008, 279, 147–168. [Google Scholar] [CrossRef] [Green Version]
- Rivas, Á.; Huelga, S.F.; Plenio, M.B. Entanglement and Non- Markovianity of Quantum Evolutions. Phys. Rev. Lett. 2010, 105, 050403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chruściński, D.; Maniscalco, S. Degree of Non-Markovianity of Quantum Evolution. Phys. Rev. Lett. 2014, 112, 120404. [Google Scholar] [CrossRef] [Green Version]
- Chruściński, D. Non-Markovianity degree for random unitary evolution. Phys. Rev. A 2015, 91, 012104. [Google Scholar] [CrossRef] [Green Version]
- Wudarski, F.A.; Chruściński, D. Markovian semigroup from non-Markovian evolutions. Phys. Rev. A 2016, 93, 042120. [Google Scholar] [CrossRef] [Green Version]
- Chruściński, D.; Kossakowski, A.; Rivas, Á. Measures of non-Markovianity: Divisibility versus backflow of information. Phys. Rev. A 2011, 83, 052128. [Google Scholar] [CrossRef] [Green Version]
- Ruskai, M.B. Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy. Rev. Math. Phys. 1994, 6, 1147–1161. [Google Scholar] [CrossRef]
- Nakajima, S. On Quantum Theory of Transport Phenomena. Prog. Theor. Phys. 1958, 20, 948–959. [Google Scholar] [CrossRef] [Green Version]
- Zwanzig, R. Ensemble Method in the Theory of Irreversibility. J. Chem. Phys. 1960, 33, 1338–1341. [Google Scholar] [CrossRef]
- Wudarski, F.A.; Należyty, P.; Sarbicki, G.; Chruściński, D. On admissible memory kernels for random unitary qubit evolution. Phys. Rev. A 2015, 91, 042105. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.-J.; Zhang, W.-M. Modeling Neuronal Systems as an Open Quantum System. Symmetry 2021, 13, 1603. [Google Scholar] [CrossRef]
- Gröblacher, S.; Trubarov, A.; Prigge, N.; Cole, C.D.; Aspelmeyer, M.; Eisert, J. Observation of non-Markovian micromechanical Brownian motion. Nat. Commun. 2015, 6, 7606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebentrost, P.; Aspuru-Guzik, A. Communication: Exciton–phonon information flow in the energy transfer process of photosynthetic complexes. J. Chem. Phys. 2011, 134, 101103. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czerwinski, A. Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond. Symmetry 2022, 14, 1752. https://doi.org/10.3390/sym14081752
Czerwinski A. Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond. Symmetry. 2022; 14(8):1752. https://doi.org/10.3390/sym14081752
Chicago/Turabian StyleCzerwinski, Artur. 2022. "Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond" Symmetry 14, no. 8: 1752. https://doi.org/10.3390/sym14081752
APA StyleCzerwinski, A. (2022). Dynamics of Open Quantum Systems—Markovian Semigroups and Beyond. Symmetry, 14(8), 1752. https://doi.org/10.3390/sym14081752