Sampled-Data Control for a Class of Singular Takagi-Sugeno Fuzzy Systems with Application in Truck-Trailer System
Abstract
:1. Introduction
- (1)
- How to deal with the obtained results to ensure that the system is not only stable but also regular and impulse-free;
- (2)
- How to construct LKF to obtain less conservative results by adding novel items or introducing new integral inequality;
- (3)
- How to design sampled-data controllers to ensure that the system is asymptotically admissible.
2. Problem Formulation
- 1.1
- If there exists a constant(represents complex field) satisfying, then the matrix pairsare regular;
- 1.2
- If there exists a scalar function,, which satisfiesfor any non-zero, then the system is stable;
- 1.3
- If, then the matrix pairsare impulse free.
- 2.1
- If the pair (E, A) is regular and impulse-free, then the system:
- 2.2
- System (8) is said to be asymptotically admissible if it is regular, impulse-free and asymptotically stable.
- (1)
- That system (7), with , is asymptotically admissible.
- (2)
- Under a zero condition, the output satisfies for all nonzero , where .
3. Main Results
4. Numerical Examples
5. Conclusions
- (1)
- Through proper transformation, the research results in this paper can be extended to normal sampled-data systems. Hence, the proposed methods have universality;
- (2)
- The input delay approach is proposed to transform the system into a time-delay system so that many novel time-delay methods can be used;
- (3)
- Both the lower and upper bounds of the sampling period were considered, which has a wider application scope;
- (4)
- Reciprocally convex inequality is used to handle integral terms, such as LKF, meaning that the conservatism of the system has been greatly reduced.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, G.; Xu, S.; Wei, Y.; Qi, Z.; Zhang, Z. New insight into reachable set estimation for uncertain singular time-delay systems. Appl. Math. Comput. 2018, 320, 769–780. [Google Scholar] [CrossRef]
- Xiang, M.; Xiang, Z.; Karimi, H.R. Asynchronous L1 control of delayed switched positive systems with mode-dependent average dwell time. Inf. Sci. 2014, 278, 703–714. [Google Scholar] [CrossRef]
- Meng, B.; Zhang, J.F. Output feedback based admissible control of switched linear singular systems. Acta Autom. Sin. 2006, 32, 179–185. [Google Scholar]
- Zheng, M.; Zhou, Y.; Yang, S.; Li, L.; Suo, Y. Sampled-Data Control for Singular Neutral System. Math. Probl. Eng. 2017, 2017, 8919714. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Zhou, Y.; Yang, S.; Li, L. Sampled-data control for nonlinear singular systems based on a Takagi–Sugeno fuzzy model. Trans. Inst. Meas. Control 2018, 40, 4027–4036. [Google Scholar]
- Li, J.; Zhang, Y.; Jin, Z. The approximation of the nonlinear singular system with impulses and sliding mode control via a singular polynomial fuzzy model approach. Symmetry 2021, 13, 1409. [Google Scholar] [CrossRef]
- Chang, X.; Qiao, M.; Zhao, X. Fuzzy Energy-to-peak Filtering for Continuous-time Nonlinear Singular System. IEEE Trans. Fuzzy Syst. 2021, 30, 2325–2336. [Google Scholar] [CrossRef]
- Wang, Y.; Pu, H.; Shi, P.; Ahn, C.K.; Luo, J. Sliding mode control for singularly perturbed Markov jump descriptor systems with nonlinear perturbation. Automatica 2021, 127, 109515. [Google Scholar] [CrossRef]
- Wang, Y.; Karimi, H.R.; Lam, H.K.; Yan, H. Fuzzy output tracking control and filtering for nonlinear discrete-time descriptor systems under unreliable communication links. IEEE Trans. Cybern. 2019, 50, 2369–2379. [Google Scholar] [CrossRef]
- Dong, X. Admissibility analysis of linear singular systems via a delta operator method. Int. J. Syst. Sci. 2014, 45, 2366–2375. [Google Scholar] [CrossRef]
- Xing, S.; Zhang, Q.; Zhu, B. Mean-square admissibility for stochastic T–S fuzzy singular systems based on extended quadratic Lyapunov function approach. Fuzzy Sets Syst. 2017, 307, 99–114. [Google Scholar] [CrossRef]
- Li, W.; Feng, Z.; Sun, W.; Zhang, J. Admissibility analysis for Takagi—Sugeno fuzzy singular systems with time delay. Neurocomputing 2016, 205, 336–340. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y. Fault detection for TS fuzzy singular systems via integral sliding modes. J. Frankl. Inst. 2020, 357, 13125–13143. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Y.; Feng, Z.; Zhao, N. Reachable set synthesis for singular systems with time-varying delay via the adaptive event-triggered scheme. J. Frankl. Inst. 2022, 359, 1503–1521. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, H.; Wang, M.; Li, Z.; Chang, Y. Asynchronous Fault Detection Filter Design for T-S Fuzzy Singular Systems Via Dynamic Event-Triggered Scheme. IEEE Trans. Fuzzy Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.; Yan, H. Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Trans. Ind. Electron. 2019, 66, 9439–9447. [Google Scholar] [CrossRef]
- Karimi, H.R. Robust H∞ filter design for uncertain linear systems over network with network-induced delays and output quantization. Nor. Foren. Autom. 2009, 30, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.; Yang, S.; Li, L. Stability analysis and TS fuzzy dynamic positioning controller design for autonomous surface Vehicles based on sampled-data control. IEEE Access 2020, 8, 148193–148202. [Google Scholar] [CrossRef]
- Dan, Z.; Liu, L.; Feng, G. Consensus of heterogeneous linear multiagent systems subject to aperiodic sampled-data and DoS attack. IEEE Trans. Cybern. 2018, 49, 1501–1511. [Google Scholar]
- Wang, Y.; Karimi, H.R.; Yan, H. An adaptive event-triggered synchronization approach for chaotic lur’e systems subject to aperiodic sampled data. IEEE Trans. Circuits Syst. II Express Briefs. 2019, 66, 442–446. [Google Scholar] [CrossRef]
- Wang, Y.; Karimi, H.R.; Lam, H.K.; Shen, H. An improved result on exponential stabilization of sampled-data fuzzy systems. IEEE Trans. Fuzzy Syst. 2018, 26, 3875–3883. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, Y.; Zhou, P. Fuzzy-Model-Based Sampled-Data Control of Chaotic Systems: A Fuzzy Time-Dependent Lyapunov-Krasovskii Functional Approach. IEEE Trans. Fuzzy Syst. 2016, 25, 1672–1684. [Google Scholar] [CrossRef]
- Zeng, H.B.; Teo, K.L.; He, Y.; Wang, W. Sampled-data stabilization of chaotic systems based on a TS fuzzy model. Inform. Sci. 2019, 483, 262–272. [Google Scholar] [CrossRef]
- Chen, W.-H.; Wang, Z.; Lu, X. On sampled-data control for masterslave synchronization of chaotic Lur’e systems. IEEE Trans. Circuits Syst. II Express Briefs 2012, 59, 515–519. [Google Scholar] [CrossRef]
- Wu, Z.; Shi, P.; Su, H. Stochastic Synchronization of Markovian Jump Neural Networks With Time-Varying Delay UsingSampled Data. IEEE Trans. Cybern. 2013, 43, 1796–1806. [Google Scholar] [CrossRef]
- Wu, Z.-G.; Shi, P.; Su, H.; Chu, J. Local synchronization of chaotic neural networks with sampled-data and saturating actuators. IEEE Trans. Cybern. 2014, 44, 2635–2645. [Google Scholar]
- Karimi, H.R.; Gao, H. Mixed H2/H∞ output-feedback control of second-order neutral systems with time-varying state and input delays. ISA Trans. 2008, 47, 311–324. [Google Scholar] [CrossRef]
- Debnath, P.; Mohiuddine, S.A. (Eds.) Soft Computing Techniques in Engineering, Health, Mathematical and Social Sciences; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Yucel, E.; Ali, M.S.; Gunasekaran, N.; Arik, S. Sampled-data filtering of Takagi-Sugeno fuzzy neural networks with interval time-varying delays. Fuzzy Sets Syst. 2017, 316, 69–81. [Google Scholar] [CrossRef]
- Li, S.; Yang, L.; Li, K.; Gao, Z. Robust sampled-data cruise control scheduling of high speed train. Transp. Res. Part C Emerg. Technol. 2014, 46, 274–283. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Zhou, P.; Duan, D.P. Robust H∞ directional control for a sampled-data autonomous airship. J. Cent. South Univ. 2014, 21, 1339–1346. [Google Scholar] [CrossRef]
- Zheng, M.; Zhou, Y.; Yang, S. Robust H-infinity control of neutral system for sampled-data dynamic positioning ships. IMA J. Math. Control. Inf. 2019, 36, 1325–1345. [Google Scholar] [CrossRef]
- Saravanakumar, R.; Datta, R.; Cao, Y. New insights on fuzzy sampled-data stabilization of delayed nonlinear systems. Chaos Solitons Fractals 2022, 154, 111654. [Google Scholar] [CrossRef]
- Chen, G.; Xia, J.; Park, J.H.; Shen, H.; Zhuang, G. Asynchronous Sampled-Data Controller Design for Switched Markov Jump Systems and Its Applications. IEEE Trans. Syst. Man Cybern. Syst. 2022, 1–13. [Google Scholar] [CrossRef]
- Wu, Z.G.; Shi, P.; Su, H.; Lu, R. Dissipativity-Based Sampled-Data Fuzzy Control Design and its Application to Truck-Trailer System. IEEE Trans. Fuzzy Syst. 2015, 23, 1669–1679. [Google Scholar] [CrossRef]
- Liu, Y.; Lee, S.M. Stability and stabilization of Takagi–Sugeno fuzzy systems via sampled-data and state quantized controller. IEEE Trans. Fuzzy Syst. 2016, 24, 635–644. [Google Scholar] [CrossRef]
- Zhu, X.L.; Chen, B.; Yue, D.; Wang, Y. An improved input delay approach to stabilization of fuzzy systems under variable sampling. IEEE Trans. Fuzzy Syst. 2012, 20, 330–341. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, H.; Wang, Y. An enhanced input-delay approach to sampled-data stabilization of T–S fuzzy systems via mixed convex combination. Nonlinear Dyn. 2014, 75, 501–512. [Google Scholar] [CrossRef]
- Zhai, Z.; Yan, H.; Chen, S.; Zhan, X.; Zeng, H. Further Results on Dissipativity Analysis for T-S Fuzzy Systems Based on Sampled-Data Control. IEEE Trans. Fuzzy Syst. 2022, 1–9. [Google Scholar] [CrossRef]
- Cai, X.; Shi, K.; She, K.; Zhong, S.; Tang, Y. Quantized Sampled-Data Control Tactic for T-S Fuzzy NCS Under Stochastic Cyber-Attacks and Its Application to Truck-Trailer System. IEEE Trans. Veh. Technol. 2022, 71, 7023–7032. [Google Scholar] [CrossRef]
- Zheng, M.; Yang, S.; Li, L. Aperiodic Sampled-Data Control for Chaotic System Based on Takagi–Sugeno Fuzzy Model. Complexity 2021, 2021, 6401231. [Google Scholar] [CrossRef]
- Hooshmandi, K.; Bayat, F.; Jahed-Motlagh, M.R.; Jalali, A.A. Stability analysis and design of nonlinear sampled-data systems under aperiodic samplings. Int. J. Robust Nonlinear Control 2018, 28, 2679–2699. [Google Scholar] [CrossRef]
- Yoneyama, J. Robust sampled-data stabilization of uncertain fuzzy systems via input delay approach. Inf. Sci. 2012, 198, 169–176. [Google Scholar] [CrossRef]
- Chen, G.; Zheng, M.; Yang, S.; Li, L. Admissibility Analysis of a Sampled-Data Singular System Based on the Input Delay Approach. Complexity 2022, 2022, 3151620. [Google Scholar] [CrossRef]
- Wang, Y.; Karimi, H.R.; Shen, H.; Fang, Z.; Liu, M. Fuzzy-model-based sliding mode control of nonlinear descriptor systems. IEEE Trans. Cybern. 2018, 99, 1–11. [Google Scholar]
- Xu, S.; Lam, J. Robust Control and Filtering of Singular Systems; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Park, P.; Ko, J.W.; Jeong, C. Reciprocally convex approach to stability of systems with time-varying delays. Automatica 2011, 47, 235–238. [Google Scholar] [CrossRef]
- Wu, Z.; Su, H.; Chu, J. H∞ filtering for singular systems with time-varying delay. Int. J. Robust Nonlinear Control 2010, 20, 1269–1284. [Google Scholar] [CrossRef]
- Haidar, A.; Boukas, E.K. Exponential stability of singular systems with multiple time-varying delays. Automatica 2009, 45, 539–545. [Google Scholar] [CrossRef]
- Han, C.; Wu, L.; Shi, P.; Zeng, Q. On dissipativity of Takagi-Sugeno fuzzy descriptor systems with time-delay. J. Franklin Inst. 2012, 349, 3170–3184. [Google Scholar] [CrossRef]
- Kchaou, M.; Gassara, H.; El-Hajjaji, A.; Toumi, A. Dissipativitybased integral sliding-mode control for a class of Takagi-Sugeno fuzzy singular systems with time-varying delay. IET Control Theory Appl. 2014, 8, 2045–2054. [Google Scholar] [CrossRef]
- Kchaou, M. Robust H1 observer-based control for a class of (TS) fuzzy descriptor systems with time-varying delay. Int. J. Fuzzy Syst. 2017, 19, 909–924. [Google Scholar] [CrossRef]
- Zhang, H.; Shen, Y.; Feng, G. Delay-dependent stability and H1 control for a class of fuzzy descriptor systems with time-delay. Fuzzy Sets Syst. 2009, 160, 1689–1707. [Google Scholar] [CrossRef]
- Peng, C.; Han, Q.L.; Yue, D.; Tian, E. Sampled-data robust H∞ control for T–S fuzzy systems with time delay and uncertainties. Fuzzy Sets Syst. 2011, 179, 20–33. [Google Scholar] [CrossRef]
- Du, Z.; Qin, Z.; Ren, H.; Lu, Z. Fuzzy Robust H∞ Sampled-Data Control for Uncertain Nonlinear Systems with Time-Varying Delay. Int. J. Fuzzy Syst. 2016, 19, 1417–1429. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Zheng, M. Sampled-Data Control for a Class of Singular Takagi-Sugeno Fuzzy Systems with Application in Truck-Trailer System. Symmetry 2022, 14, 1762. https://doi.org/10.3390/sym14091762
Yang Y, Zheng M. Sampled-Data Control for a Class of Singular Takagi-Sugeno Fuzzy Systems with Application in Truck-Trailer System. Symmetry. 2022; 14(9):1762. https://doi.org/10.3390/sym14091762
Chicago/Turabian StyleYang, Yongcheng, and Minjie Zheng. 2022. "Sampled-Data Control for a Class of Singular Takagi-Sugeno Fuzzy Systems with Application in Truck-Trailer System" Symmetry 14, no. 9: 1762. https://doi.org/10.3390/sym14091762
APA StyleYang, Y., & Zheng, M. (2022). Sampled-Data Control for a Class of Singular Takagi-Sugeno Fuzzy Systems with Application in Truck-Trailer System. Symmetry, 14(9), 1762. https://doi.org/10.3390/sym14091762