Exploiting Anyonic Behavior of Quasicrystals for Topological Quantum Computing
Abstract
:1. Introduction
2. Correspondence between Anyons and Quasicrystals
2.1. Fibonacci Anyons and Fibonacci -Algebra
2.2. Fibonacci Quasicrystals and the Fibonacci -Algebra
- ,
- for all , and
- is compact and equal to the closure of its interior .
3. Quasicrystalline Topological Quantum Information Processing
4. Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniversary ed.; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Barbara, M.; Terhal, B.M. Quantum error correction for quantum memories. Rev. Mod. Phys. 2015, 87, 307. [Google Scholar] [CrossRef]
- Kelly, J.; Barends, R.; Fowler, A.G.; Megrant, A.; Jeffrey, E.; White, T.C.; Sank, D.; Mutus, J.Y.; Campbell, B.; Chen, Y.; et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 2015, 519, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Djordjevic, I.B. Quantum Information Processing, Quantum Computing, and Quantum Error Correction: An Engineering Approach; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Seedhouse, A.E.; Hansen, I.; Laucht, A.; Yang, C.H.; Dzurak, A.S.; Saraiva, A. Quantum computation protocol for dressed spins in a global field. Phys. Rev. B 2021, 104, 235411. [Google Scholar] [CrossRef]
- Breuckmann, N.P.; Eberhardt, J.N. Quantum Low-Density Parity-Check Codes. PRX Quantum 2021, 2, 040101. [Google Scholar] [CrossRef]
- Wang, D.S. A comparative study of universal quantum computing models: Toward a physical unification. Quantum Eng. 2021, 3, e85. [Google Scholar] [CrossRef]
- Pachos, J.K. Introduction to Topological Quantum Computation; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Wang, Z. Topological Quantum Computation; Number 112; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Bartolomei, H.; Kumar, M.; Bisognin, R.; Marguerite, A.; Berroir, J.M.; Bocquillon, E.; Placais, B.; Cavanna, A.; Dong, Q.; Gennser, U.; et al. Fractional statistics in anyon collisions. Science 2020, 368, 173–177. [Google Scholar] [CrossRef]
- Ding, L.; Wang, H.; Wang, Y.; Wang, S. Based on Quantum Topological Stabilizer Color Code Morphism Neural Network Decoder. Quantum Eng. 2022, 2022, 9638108. [Google Scholar] [CrossRef]
- Marcolli, M.; Napp, J. Quantum Computation and Real Multiplication. Math. Comput. Sci. 2015, 9, 63–84. [Google Scholar] [CrossRef]
- Planat, M.; Aschheim, R.; Amaral, M.M.; Irwin, K. Universal quantum computing and three-manifolds. Symmetry 2018, 10, 773. [Google Scholar] [CrossRef]
- Planat, M.; Amaral, M.M.; Fang, F.; Chester, D.; Aschheim, R.; Irwin, K. Character varieties and algebraic surfaces for the topology of quantum computing. Symmetry 2022, 14, 915. [Google Scholar] [CrossRef]
- Baake, M.; Grimm, U. Aperiodic Order; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bellissard, J. Gap labelling theorems for Schrödinger’s operators. In From Number Theory to Physics; Luck, J.M., Moussa, P., Waldschmidt, M., Eds.; Les Houches March 89; Springer: Berlin/Heidelberg, Germany, 1992; pp. 538–630. [Google Scholar] [CrossRef]
- Kohmoto, M.; Sutherland, B. Electronic States on a Penrose Lattice. Phys. Rev. Lett. 1986, 56, 2740. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, B. Self-similar ground-state wave function for electrons on a two-dimensional Penrose lattice. Phys. Rev. B 1986, 34, 3904. [Google Scholar] [CrossRef] [PubMed]
- Fujiwara, T.; Kohmoto, M.; Tokihiro, T. Multifractal wave functions on a Fibonacci lattice. Phys. Rev. B 1989, 40, 7413(R). [Google Scholar] [CrossRef] [PubMed]
- Luck, J.M. Cantor spectra and scaling of gap widths in deterministic aperiodic systems. Phys. Rev. B 1989, 39, 5834. [Google Scholar] [CrossRef]
- Süto, A. Singular continuous spectrum on a cantor set of zero Lebesgue measure for the Fibonacci Hamiltonian. J. Stat. Phys. 1989, 56, 525–531. [Google Scholar] [CrossRef]
- Benza, V.G. Band spectrum of the octagonal quasicrystal: Finite measure gaps and chaos. Phys. Rev. B Condens. Matter. 1991, 44, 10343–10345. [Google Scholar] [CrossRef]
- Kaliteevski, M.A.; Br, S.; Abram, R.A.; Krauss, T.F.; Rue, R.D.; Millar, P. Two-dimensional Penrose-tiled photonic quasicrystals: From diffraction pattern to band. Nanotechnology 2000, 11, 274. [Google Scholar] [CrossRef]
- Florescu, M.; Torquato, S.; Steinhardt, P.J. Complete band gaps in two-dimensional photonic quasicrystals. Phys. Rev. B 2009, 80, 155112. [Google Scholar] [CrossRef]
- Kalugin, P.; Katz, A. Electrons in deterministic quasicrystalline potentials and hidden conserved quantities. J. Phys. A Math. Theor. 2014, 47, 315206. [Google Scholar] [CrossRef] [Green Version]
- Tanese, D.; Gurevich, E.; Baboux, F.; Jacqmin, T.; Lemaître, A.; Galopin, E.; Sagnes, I.; Amo, A.; Bloch, J.; Akkermans, E. Fractal Energy Spectrum of a Polariton Gas in a Fibonacci Quasiperiodic Potential. Phys. Rev. Lett. 2014, 112, 146404. [Google Scholar] [CrossRef]
- Gambaudo, J.M.; Vignolo, P. Brillouin zone labelling for quasicrystals. New J. Phys. 2014, 16, 043013. [Google Scholar] [CrossRef]
- Macé, N.; Jagannathan, A.; Kalugin, P.; Mosseri, R.; Piéchon, F. Critical eigenstates and their properties in one- and two-dimensional quasicrystals. Phys. Rev. B 2017, 96, 045138. [Google Scholar] [CrossRef]
- Macé, N.; Laflorencie, N.; Alet, F. Many-body localization in a quasiperiodic Fibonacci chain. SciPost Phys. 2019, 6, 050. [Google Scholar] [CrossRef]
- Sen, A.; Perelman, C.C. A Hamiltonian model of the Fibonacci quasicrystal using non-local interactions: Simulations and spectral analysis. Eur. Phys. J. B 2020, 93, 67. [Google Scholar] [CrossRef]
- Baggioli, M.; Landry, M. Effective Field Theory for Quasicrystals and Phasons Dynamics. SciPost Phys. 2020, 9, 062. [Google Scholar] [CrossRef]
- Jagannathan, A. The Fibonacci quasicrystal: Case study of hidden dimensions and multifractality. Rev. Mod. Phys. 2021, 93, 045001. [Google Scholar] [CrossRef]
- Satija, I.I.; Naumis, G.G. Chern and Majorana modes of quasiperiodic systems. Phys. Rev. B 2013, 88, 054204. [Google Scholar] [CrossRef]
- Ghadimi, R.; Sugimoto, T.; Tohyama, T. Majorana Zero-Energy Mode and Fractal Structure in Fibonacci-Kitaev Chain. Phys. Soc. Jpn. 2017, 86, 114707. [Google Scholar] [CrossRef]
- Varjas, D.; Lau, A.; Pöyhönen, K.; Akhmerov, A.R.; Pikulin, D.I.; Fulga, I.C. Topological Phases without Crystalline Counterparts. Phys. Rev. Lett. 2019, 123, 196401. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhang, Y.; Liu, Y.B.; Liu, C.C.; Chen, W.Q.; Yang, F. Kohn-Luttinger Mechanism Driven Exotic Topological Superconductivity on the Penrose Lattice. Phys. Rev. Lett. 2020, 125, 017002. [Google Scholar] [CrossRef]
- Duncan, C.W.; Manna, S.; Nielsen, A.E.B. Topological models in rotationally symmetric quasicrystals. Phys. Rev. B 2020, 101, 115413. [Google Scholar] [CrossRef]
- Liu, T.; Cheng, S.; Guo, H.; Xianlong, G. Fate of Majorana zero modes, exact location of critical states, and unconventional real-complex transition in non-Hermitian quasiperiodic lattices. Phys. Rev. B 2021, 103, 104203. [Google Scholar] [CrossRef]
- Hua, C.B.; Liu, Z.R.; Peng, T.; Chen, R.; Xu, D.H.; Zhou, B. Disorder-induced chiral and helical Majorana edge modes in a two-dimensional Ammann-Beenker quasicrystal. Phys. Rev. B 2021, 104, 155304. [Google Scholar] [CrossRef]
- Fraxanet, J.; Bhattacharya, U.; Grass, T.; Rakshit, D.; Lewenstein, M.; Dauphin, A. Topological properties of the longrange Kitaev chain with Aubry-Andre-Harper modulation. Phys. Rev. Res. 2021, 3, 013148. [Google Scholar] [CrossRef]
- Rosa, M.I.N.; Ruzzene, M.; Prodan, E. Topological gaps by twisting. Commun. Phys. 2021, 4, 130. [Google Scholar] [CrossRef]
- Sarangi, S.; Nielsen, A.E.B. Effect of coordination on topological phases on self-similar structures. Phys. Rev. B 2021, 104, 045147. [Google Scholar] [CrossRef]
- Fan, J.; Huang, H. Topological states in quasicrystals. Front. Phys. 2022, 17, 13203. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Belić, M.R.; Zhong, W.; Zhang, Y.; Xiao, M. Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation. Phys. Rev. Lett. 2015, 115, 180403. [Google Scholar] [CrossRef]
- Elitzur, S.; Moore, G.W.; Schwimmer, A.; Seiberg, N. Remarks on the Canonical Quantization of the Chern–Simons-Witten Theory. Nucl. Phys. B 1989, 326, 108–134. [Google Scholar] [CrossRef]
- Trebst, S.; Troyer, M.; Wang, Z.; Ludwig, A.W.W. A Short Introduction to Fibonacci Anyon Models. Prog. Theor. Phys. Suppl. 2008, 176, 384–407. [Google Scholar] [CrossRef]
- Bratteli, O. Inductive limits of finite-dimensional C*-algebras. Trans. Am. Math. Soc. 1972, 171, 195–234. [Google Scholar] [CrossRef]
- Davidson, K.R. C*-Algebras by Example; Fields Institute Monographs; Fields Institute for Research in Mathematical Sciences: Toronto, ON, Canada, 1996; ISSN 1069-5273. [Google Scholar]
- Hannaford, P.; Sacha, K. Condensed matter physics in big discrete time crystals. AAPPS Bull. 2022, 32, 12. [Google Scholar] [CrossRef]
- Connes, A. Non-Commutative Geometry; Academic Press: Boston, MA, USA, 1994. [Google Scholar]
- Sadun, L. Tilings, tiling spaces and topology. Philos. Mag. 2006, 86, 875–881. [Google Scholar] [CrossRef]
- Tasnadi, T. Penrose Tilings, Chaotic Dynamical Systems and Algebraic K-Theory. arXiv 2002, arXiv:math-ph/0204022. [Google Scholar] [CrossRef]
- Jones, V.F.R. Index for Subfactors. Invent. Math. 1983, 72, 1–26. Available online: http://eudml.org/doc/143011 (accessed on 1 January 2022). [CrossRef]
- Kauffman, L.H.; Lomonaco, S.J. Braiding, Majorana fermions, Fibonacci particles and topological quantum computing. Quantum Inf. Process. 2018, 17, 201. [Google Scholar] [CrossRef]
- Goodman, F.M.; Wenzl, H. The Temperley-Lieb algebra at roots of unity. Pac. J. Math. 1993, 161, 307–334. [Google Scholar] [CrossRef]
- Feiguin, A.; Trebst, S.; Ludwig, A.W.W.; Troyer, M.; Kitaev, A.; Wang, A.; Freedman, M.H. Interacting Anyons in Topological Quantum Liquids: The Golden Chain. Phys. Rev. Lett. 2007, 98, 160409. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, C.X.; Gazibegovic, S.; Xu, D.; Logan, J.A.; Wang, G.; van Loo, N.; Bommer, J.D.; de Moor, M.W.; Car, D.; et al. Retraction Note: Quantized Majorana conductance. Nature 2021, 591, E30. [Google Scholar] [CrossRef]
- Gazibegovic, S.; Car, D.; Zhang, H.; Balk, S.C.; Logan, J.A.; De Moor, M.W.; Cassidy, M.C.; Schmits, R.; Xu, D.; Wang, G.; et al. RETRACTED ARTICLE: Epitaxy of advanced nanowire quantum devices. Nature 2017, 548, 434–438. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Belić, M.R.; Zheng, H.; Wang, Z.; Xiao, M.; Zhang, Y. Photonic Floquet topological insulators in atomic ensembles. Laser Photonics Rev. 2015, 9, 331–338. [Google Scholar] [CrossRef]
- Flouris, K.; Jimenez, M.M.; Debus, J.D.; Herrmann, H.J. Confining massless Dirac particles in two-dimensional curved space. Phys. Rev. B 2018, 98, 155419. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, R.; Zhang, Y.; Kartashov, Y.V.; Li, F.; Zhong, H.; Guan, H.; Gao, K.; Li, F.; Zhang, Y.; et al. Observation of edge solitons in photonic graphene. Nat. Commun. 2020, 11, 1902. [Google Scholar] [CrossRef] [PubMed]
- Saraswat, V.; Jacobberger, R.M.; Arnold, M.S. Materials Science Challenges to Graphene Nanoribbon Electronics. ACS Nano 2021, 15, 3674–3708. [Google Scholar] [CrossRef] [PubMed]
Fibonacci Anyons | Quantum Fibonacci Chain |
---|---|
Anyon | Tile |
0, 1 | S, L |
d-fold degeneracy | # of tiles |
Fusion with 1 (anyon destruction) | Deflation (tiles merging) |
Braid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaral, M.; Chester, D.; Fang, F.; Irwin, K. Exploiting Anyonic Behavior of Quasicrystals for Topological Quantum Computing. Symmetry 2022, 14, 1780. https://doi.org/10.3390/sym14091780
Amaral M, Chester D, Fang F, Irwin K. Exploiting Anyonic Behavior of Quasicrystals for Topological Quantum Computing. Symmetry. 2022; 14(9):1780. https://doi.org/10.3390/sym14091780
Chicago/Turabian StyleAmaral, Marcelo, David Chester, Fang Fang, and Klee Irwin. 2022. "Exploiting Anyonic Behavior of Quasicrystals for Topological Quantum Computing" Symmetry 14, no. 9: 1780. https://doi.org/10.3390/sym14091780
APA StyleAmaral, M., Chester, D., Fang, F., & Irwin, K. (2022). Exploiting Anyonic Behavior of Quasicrystals for Topological Quantum Computing. Symmetry, 14(9), 1780. https://doi.org/10.3390/sym14091780