Polyadization of Algebraic Structures
Abstract
:1. Introduction
I am no poet, but if you think for yourselves, as I proceed, the facts will form a poem in your minds. Michael Faraday.“The Life and Letters of Faraday” (1870) by Bence Jones.
2. Preliminaries
3. Polyadic Semisimplicity
3.1. Simple Polyadic Structures
3.2. Semisimple Polyadic Structures
Supersymmetric Double Decomposition
4. Polyadization Concept
4.1. Polyadization of Binary Algebraic Structures
4.2. Concrete Examples of the Polyadization Procedure
4.2.1. Polyadization of
4.2.2. Polyadization of
4.3. "Deformation" of Binary Operations by Shifts
4.4. Polyadization of Binary Supergroups
Polyadization of
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Erdmann, K.; Holm, T. Algebras and Representation Theory; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Hungerford, T.W. Algebra; Springer: New York, NY, USA, 1974; p. 502. [Google Scholar]
- Lambek, J. Lectures on Rings and Modules; Blaisdell: Providence, RI, USA, 1966; p. 184. [Google Scholar]
- Rotman, J.J. Advanced Modern Algebra, 2nd ed.; AMS: Providence, RI, USA, 2010. [Google Scholar] [CrossRef]
- Curtis, C.W.; Reiner, I. Representation Theory of Finite Groups and Associative Algebras; AMS: Providence, RI, USA, 1962. [Google Scholar]
- Fulton, W.; Harris, J. Representation Theory: A First Course; Springer: New York, NY, USA, 2004; p. 551. [Google Scholar]
- Knapp, A.W. Representation Theory of Semisimple Groups; Princeton University Press: Princeton, NJ, USA, 1986. [Google Scholar] [CrossRef]
- Harada, M. On semi-simple abelian categories. Osaka J. Math. 1970, 7, 89–95. [Google Scholar]
- Knop, F. A construction of semisimple tensor categories. C. R. Math. 2006, 343, 15–18. [Google Scholar] [CrossRef]
- Simson, D. Pure semisimple categories and rings of finite representation type. J. Algebra 1977, 48, 290–296. [Google Scholar] [CrossRef]
- Duplij, S. Polyadic Algebraic Structures; IOP Publishing: Bristol, UK, 2022; p. 461. [Google Scholar] [CrossRef]
- Markl, M.; Shnider, S.; Stasheff, J. Operads in Algebra, Topology and Physics; AMS: Providence, RI, USA, 2002. [Google Scholar]
- Loday, J.L.; Vallette, B. Algebraic Operads; Springer: Heidelberg, Germany, 2012; p. 634. [Google Scholar]
- Zhevlakov, K.A.; Slin’ko, A.M.; Shestakov, I.P.; Shirshov, A.I.; Smith, H.F. (Eds.) Rings That are Nearly Associative; Pure and Applied Mathematics 104; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Sabinin, L.V.; Sbitneva, L.; Shestakov, I. (Eds.) Non-Associative Algebra and Its Applications; Number 246 in Lecture Notes in Pure and Applied Mathematics; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wedderburn, J.H.M. On hypercomplex numbers. Proc. Lond. Math. Soc. 1908, 6, 77–118. [Google Scholar] [CrossRef]
- Herstein, I.N. Noncommutative Rings; Mathematical Association of America: Washington, DC, USA, 1996; p. 214. [Google Scholar]
- Lam, T.Y. A First Course in Noncommutative Rings; Springer: New York, NY, USA, 1991. [Google Scholar] [CrossRef]
- Nikitin, A.N. Semisimple Artinian (2,n)-rings. Mosc. Univ. Math. Bull. 1984, 39, 1–6. [Google Scholar]
- Duplij, S. Polyadic analogs of direct product. Universe 2022, 8, 230. [Google Scholar] [CrossRef]
- Post, E.L. Polyadic groups. Trans. Am. Math. Soc. 1940, 48, 208–350. [Google Scholar] [CrossRef]
- Duplij, S. Polyadic Algebraic Structures And Their Representations. In Proceedings of the Exotic Algebraic and Geometric Structures in Theoretical Physics; Duplij, S., Ed.; Nova Publishers: New York, NY, USA, 2018; pp. 251–308. [Google Scholar]
- Duplij, S. Arity shape of polyadic algebraic structures. J. Math. Phys. Anal. Geom. 2019, 15, 3–56. [Google Scholar] [CrossRef]
- Belousov, V.D. n-Ary Quasigroups; Shtintsa: Kishinev, Moldova, 1972; p. 225. [Google Scholar]
- Gal’mak, A.M. n-Ary Groups, Part 1; Gomel University: Gomel, Belarus, 2003; p. 195. [Google Scholar]
- Dörnte, W. Unterschungen über einen verallgemeinerten Gruppenbegriff. Math. Z. 1929, 29, 1–19. [Google Scholar] [CrossRef]
- Gleichgewicht, B.; Głazek, K. Remarks on n-groups as abstract algebras. Colloq. Math. 1967, 17, 209–219. [Google Scholar] [CrossRef]
- Hazewinkel, M.; Gubareni, N.M. Algebras, Rings and Modules: Non-Commutative Algebras and Rings; CRC Press: Boca Raton, FL, USA, 2016; p. 388. [Google Scholar]
- Carlsson, R. N-ary algebras. Nagoya Math. J. 1980, 78, 45–56. [Google Scholar] [CrossRef]
- Lister, W.G. Ternary rings. Trans. Am. Math. Soc. 1971, 154, 37–55. [Google Scholar] [CrossRef]
- Profera, L. Anelli ternari di Lister semisemplici. Note Mat. 1982, 11, 1–56. [Google Scholar]
- Duplij, S.; Vogl, R. Polyadic Braid Operators and Higher Braiding Gates. Universe 2021, 7, 301. [Google Scholar] [CrossRef]
- Lambe, L.A.; Radford, D.E. Introduction to the Quantum Yang-Baxter Equation and Quantum Groups: An Algebraic Approach; Kluwer: Dordrecht, The Netherlands, 1997; p. 292. [Google Scholar]
- Kauffman, L.H.; Lomonaco, S.J. Braiding Operators are Universal Quantum Gates. New J. Phys. 2004, 6, 134–139. [Google Scholar] [CrossRef]
- Melnikov, D.; Mironov, A.; Mironov, S.; Morozov, A.; Morozov, A. Towards topological quantum computer. Nucl. Phys. 2018, B926, 491–508. [Google Scholar] [CrossRef]
- Berezin, F.A. Introduction to Superanalysis; Reidel: Dordrecht, The Netherlands, 1987; p. 421. [Google Scholar]
- Leites, D. Supermanifold Theory; Karelia Branch of the USSR Academy of Sciences: Petrozavodsk, Russia, 1983. [Google Scholar]
- Dietzel, C.; Mittal, G. Summands of finite group algebras. Czech. Math. J. 2021, 71, 1011–1014. [Google Scholar] [CrossRef]
- Duplij, S. Higher braid groups and regular semigroups from polyadic-binary correspondence. Mathematics 2021, 9, 972. [Google Scholar] [CrossRef]
- Zupnik, D. Polyadic semigroups. Publ. Math. Debr. 1967, 14, 273–279. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duplij, S. Polyadization of Algebraic Structures. Symmetry 2022, 14, 1782. https://doi.org/10.3390/sym14091782
Duplij S. Polyadization of Algebraic Structures. Symmetry. 2022; 14(9):1782. https://doi.org/10.3390/sym14091782
Chicago/Turabian StyleDuplij, Steven. 2022. "Polyadization of Algebraic Structures" Symmetry 14, no. 9: 1782. https://doi.org/10.3390/sym14091782
APA StyleDuplij, S. (2022). Polyadization of Algebraic Structures. Symmetry, 14(9), 1782. https://doi.org/10.3390/sym14091782