An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
3. The First Result
4. The Second Result
5. Examples
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejenaru, A.; Postolache, M. An unifying approach for some nonexpansiveness conditions on modular vector spaces. Nonlinear Anal. Model. Control 2020, 25, 827–845. [Google Scholar] [CrossRef]
- Betiuk-Pilarska, A.; Domínguez Benavides, T. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Funct. Anal. 2016, 1, 343–359. [Google Scholar]
- de Blasi, F.S.; Myjak, J. Sur la convergence des approximations successives pour les contractions non linéaires dans un espace de Banach. C. R. l’Académie Sci. 1976, 283, 185–187. [Google Scholar]
- de Blasi, F.S.; Myjak, J.; Reich, S.; Zaslavski, A.J. Generic existence and approximation of fixed points for nonexpansive set-valued maps. Set-Valued Var. Anal. 2009, 17, 97–112. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kassab, W.; Turcanu, T. Numerical reckoning fixed points of (E)-type mappings in modular vector spaces. Mathematics 2019, 7, 390. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Khamsi, M.A.; Kozlowski, W.M.; Reich, S. Fixed point theory in modular function spaces. Nonlinear Anal. Theory Methods Appl. 1990, 14, 935–953. [Google Scholar] [CrossRef]
- Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kozlowski, W.M. An introduction to fixed point theory in modular function spaces. In Topics in Fixed Point Theory; Springer: Berlin/Heidelberg, Germany, 2014; pp. 159–222. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Funct. Anal. 2016, 1, 63–84. [Google Scholar]
- Okeke, G.A.; Abbas, M.; de la Sen, M. Approximation of the fixed point of multivalued quasi-nonexpansive mappings via a faster iterative process with applications. Discret. Dyn. Nat. Soc. 2020, 2020, 8634050. [Google Scholar] [CrossRef]
- Okeke, G.A.; Ugwuogor, C.I. Iterative construction of the fixed point of Suzuki’s generalized nonexpansive mappings in Banach spaces. Fixed Point Theory 2022, 23, 633–652. [Google Scholar]
- Rakotch, E. A note on contractive mappings. Proc. Am. Math. Soc. 1962, 13, 459–465. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Generic aspects of metric fixed point theory. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 557–575. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in Nonlinear Analysis; Developments in Mathematics; Springer: Berlin/Heidelberg, Germany, 2014; Volume 34. [Google Scholar]
- Zaslavski, A.J. Approximate Solutions of Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for Solving Common Fixed Point Problems; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Funct. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Gibali, A.; Reich, S.; Zalas, R. Outer approximation methods for solving variational inequalities in Hilbert space. Optimization 2017, 66, 417–437. [Google Scholar] [CrossRef]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Tam, M.K. Algorithms based on unions of nonexpansive maps. Optim. Lett. 2018, 12, 1019–1027. [Google Scholar] [CrossRef] [Green Version]
- Bauschke, H.H.; Noll, D. On the local convergence of the Douglas-Rachford algorithm. Arch. Math. 2014, 102, 589–600. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. Symmetry 2022, 14, 1852. https://doi.org/10.3390/sym14091852
Zaslavski AJ. An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. Symmetry. 2022; 14(9):1852. https://doi.org/10.3390/sym14091852
Chicago/Turabian StyleZaslavski, Alexander J. 2022. "An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces" Symmetry 14, no. 9: 1852. https://doi.org/10.3390/sym14091852
APA StyleZaslavski, A. J. (2022). An Algorithm Based on Unions of Nonexpansive Mappings in Metric Spaces. Symmetry, 14(9), 1852. https://doi.org/10.3390/sym14091852