Repdigits as Sums of Four Tribonacci Numbers
Abstract
:1. Introduction
2. Auxiliary Results
3. Proof of Theorem 1
3.1. Bounding the Variables
3.2. Case 1
3.3. Case 2
3.4. Case 3
3.5. Case 4
4. Reducing The Bounds
4.1. Step 1
4.2. Step 2
4.3. Step 3
4.4. Step 4
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Obláth, R. Une proprété des puissances parfaites. Mathesis 1956, 65, 356–364. [Google Scholar]
- Bugeaud, Y.; Mignotte, M. On integers with identical digits. Mathematika 1999, 46, 411–417. [Google Scholar] [CrossRef]
- Luca, F. Fibonacci and Lucas Numbers with Only One Distinct Digit. Port. Math. 2000, 57, 242–254. [Google Scholar]
- Dıaz-Alvarado, S.; Luca, F. Fibonacci numbers which are sums of two repdigits. In Proceedings of the XIVth International Conference on Fibonacci numbers and their applications, Morelia, Mexico, 5 July 2011; pp. 5–9. [Google Scholar]
- Luca, F. Repdigits as sums of three Fibonacci numbers. Math. Commun. 2012, 17, 1–11. [Google Scholar]
- Luca, F.; Normenyo, B.V.; Togbé, A. Repdigits as sums of three Lucas numbers. Colloq. Math. 2019, 156, 255–265. [Google Scholar] [CrossRef]
- Normenyo, B.V.; Luca, F.; Togbé, A. Repdigits as sums of three Pell numbers. Period. Math. Hungar. 2018, 77, 318–328. [Google Scholar] [CrossRef]
- Ddamulira, M. Repdigits as sums of three balancing numbers. Math. Slovaca 2020, 70, 557–566. [Google Scholar] [CrossRef]
- Normenyo, B.V.; Luca, F.; Togbé, A. Repdigits as Sums of Four Fibonacci or Lucas Numbers. J. Integer Seq. 2018, 21, Article 18.7.7. [Google Scholar]
- Luca, F.; Normenyo, B.V.; Togbé, A. Repdigits as sums of four Pell numbers. Bol. Soc. Mat. Mex. 2019, 25, 249–266. [Google Scholar] [CrossRef]
- Keskin, R.; Erduvan, F. Repdigits in the base b as sums of four balancing numbers. Math. Bohem. 2021, 146, 55–68. [Google Scholar] [CrossRef]
- Ddamulira, M. Repdigits as sums of three Padovan numbers. Bol. Soc. Mat. Mex. 2020, 26, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Tribonacci Number. Available online: https://mathworld.wolfram.com/TribonacciNumber.html (accessed on 10 September 2022).
- Spickerman, W.R.; Joyner, R.N. Binet’s formula for the recursive sequence of order k. Fibonacci Quart. 1984, 22, 327–331. [Google Scholar]
- Bombieri, E.; Gubler, W. Heights in Diophantine Geometry; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Matveev, E.M. An explicit lower bound for ahomogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 2000, 64, 1217–1269. [Google Scholar] [CrossRef]
- Bugeaud, Y.; Mignotte, M.; Siksek, S. Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers. Ann. Math. 2006, 163, 969–1018. [Google Scholar] [CrossRef] [Green Version]
- de Weger, B.M.M. Algorithms for Diophantine Equations; Centrum voor Wiskunde en Informatica: Amsterdam, The Netherlands, 1989; pp. 38–40. [Google Scholar]
- Le, M.H. An Inequality Concerning the Gel’fond-Baker Method. J. Guangdong Educ. Inst. 2008, 28, 11–12. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Yang, P.; Zhang, S.; Zhang, K. Repdigits as Sums of Four Tribonacci Numbers. Symmetry 2022, 14, 1931. https://doi.org/10.3390/sym14091931
Zhou Y, Yang P, Zhang S, Zhang K. Repdigits as Sums of Four Tribonacci Numbers. Symmetry. 2022; 14(9):1931. https://doi.org/10.3390/sym14091931
Chicago/Turabian StyleZhou, Yuetong, Peng Yang, Shaonan Zhang, and Kaiqiang Zhang. 2022. "Repdigits as Sums of Four Tribonacci Numbers" Symmetry 14, no. 9: 1931. https://doi.org/10.3390/sym14091931
APA StyleZhou, Y., Yang, P., Zhang, S., & Zhang, K. (2022). Repdigits as Sums of Four Tribonacci Numbers. Symmetry, 14(9), 1931. https://doi.org/10.3390/sym14091931