Review of Novel Approaches to Organic Liquid Scintillators in Neutrino Physics
Abstract
:1. Introduction
2. Principles of Organic Liquid Scintillators
2.1. Mechanism of Scintillation
2.2. Scintillator Energy Levels
2.3. Excitation and De-Excitation Processes
2.4. Fluors and Wavelength Shifters
2.5. Light Yield, Quenching, and Pulse Shape Discrimination
2.6. Liquid Scintillator Materials
2.7. Optical Properties
2.8. Purification
2.9. Cherenkov Light
3. Metal-Loaded Scintillators
4. Blended Scintillators
5. Low-Temperature Scintillators
6. Water-Based Liquid Scintillators
7. Slow Scintillators
8. Opaque Scintillators
9. Siloxane-Based Scintillators
10. Quantum Dots
11. Floating Liquid Scintillators
12. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cowan, C.L.; Reines, F.; Harrison, F.B.; Kruse, H.W.; McGuire, A.D. Detection of the Free Neutrino: A Confirmation. Science 1956, 124, 103–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abe, S.; Ebihara, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; et al. Precision Measurement of Neutrino Oscillation Parameters with KamLAND. Phys. Rev. Lett. 2008, 100, 221803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acero, M.A.; Adamson, P.; Aliaga, L.; Alion, T.; Allakhverdian, V.; Altakarli, S.; Anfimov, N.; Antoshkin, A.; Aurisano, A.; Back, A.; et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Phys. Rev. Lett. 2019, 123, 151803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, F.P.; Bai, J.Z.; Balantekin, A.B.; Band, H.R.; Beavis, D.; Beriguete, W.; Bishai, M.; Blyth, S.; Boddy, K.; Brown, R.L.; et al. Observation of Electron-Antineutrino Disappearance at Daya Bay. Phys. Rev. Lett. 2012, 108, 171803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Kerret, H.; Abrahao, T.; Almazan, H.; dos Anjos, J.C.; Appel, S.; Barriere, J.C.; Yermia, F. Double Chooz θ13 measurement via total neutron capture detection. Nat. Phys. 2020, 16, 558–564. [Google Scholar] [CrossRef]
- Ahn, J.K.; Chebotaryov, S.; Choi, J.H.; Choi, S.; Choi, W.; Choi, Y.; Jang, H.I.; Jang, J.S.; Jeon, E.J.; Jeong, I.S.; et al. Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment. Phys. Rev. Lett. 2012, 108, 191802. [Google Scholar] [CrossRef] [Green Version]
- Araki, T.; Enomoto, S.; Furuno, K.; Gando, Y.; Ichimura, K.; Ikeda, H.; Piquemal, F. Experimental investigation of geologically produced antineutrinos with KamLAND. Nature 2005, 436, 499–503. [Google Scholar] [CrossRef]
- Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; et al. Comprehensive geoneutrino analysis with Borexino. Phys. Rev. D 2020, 101, 012009. [Google Scholar] [CrossRef] [Green Version]
- Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Buizza Avanzini, M.; Caccianiga, B.; Cadonati, L.; Calaprice, F.; Cavalcante, P.; et al. Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy. Phys. Rev. D 2014, 89, 112007. [Google Scholar] [CrossRef] [Green Version]
- The Borexino Collaboration. Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun. Nature 2020, 587, 577–582. [Google Scholar] [CrossRef]
- Athanassopoulos, C.; Auerbach, L.B.; Burman, R.L.; Cohen, I.; Caldwell, D.O.; Dieterle, B.D.; Donahue, J.B.; Eisner, A.M.; Fazely, A.; Federspiel, F.J.; et al. Evidence for ν¯μ→ν¯e Oscillations from the LSND Experiment at the Los Alamos Meson Physics Facility. Phys. Rev. Lett. 1996, 77, 3082–3085. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.J.; Kim, B.R.; Kim, J.Y.; Han, B.Y.; Jang, C.H.; Jeon, E.J.; Joo, K.K.; Kim, H.J.; Kim, H.S.; Kim, Y.D.; et al. Sterile Neutrino Search at the NEOS Experiment. Phys. Rev. Lett. 2017, 118, 121802. [Google Scholar] [CrossRef] [Green Version]
- Almazán, H.; Bernard, L.; Blanchet, A.; Bonhomme, A.; Buck, C.; del Amo Sanchez, P.; El Atmani, I.; Haser, J.; Kandzia, F.; Kox, S.; et al. Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data. Phys. Rev. D 2020, 102, 052002. [Google Scholar] [CrossRef]
- Andriamirado, M.; Balantekin, A.B.; Band, H.R.; Bass, C.D.; Bergeron, D.E.; Berish, D.; Bowden, N.S.; Brodsky, J.P.; Bryan, C.D.; Classen, T.; et al. Improved short-baseline neutrino oscillation search and energy spectrum measurement with the PROSPECT experiment at HFIR. Phys. Rev. D 2021, 103, 032001. [Google Scholar] [CrossRef]
- Serebrov, A.P.; Samoilov, R.M.; Ivochkin, V.G.; Fomin, A.K.; Zinoviev, V.G.; Neustroev, P.V.; Golovtsov, V.L.; Volkov, S.S.; Chernyj, A.V.; Zherebtsov, O.M.; et al. Search for sterile neutrinos with the Neutrino-4 experiment and measurement results. Phys. Rev. D 2021, 104, 032003. [Google Scholar] [CrossRef]
- Böser, S.; Buck, C.; Giunti, C.; Lesgourgues, J.; Ludhova, L.; Mertens, S.; Schukraft, A.; Wurm, M. Status of light sterile neutrino searches. Prog. Part. Nucl. Phys. 2020, 111, 103736. [Google Scholar] [CrossRef] [Green Version]
- Schoppmann, S. Status of Anomalies and Sterile Neutrino Searches at Nuclear Reactors. Universe 2021, 7, 360. [Google Scholar] [CrossRef]
- Boireau, G.; Bouvet, L.; Collin, A.P.; Coulloux, G.; Cribier, M.; Deschamp, H.; Durand, V.; Fechner, M.; Fischer, V.; Gaffiot, J.; et al. Online monitoring of the Osiris reactor with the Nucifer neutrino detector. Phys. Rev. D 2016, 93, 112006. [Google Scholar] [CrossRef] [Green Version]
- Abusleme, A.; Adam, T.; Ahmad, S.; Aiello, S.; Akram, M.; Ali, N.; An, F.; An, G.; An, Q.; Andronico, G.; et al. Feasibility and physics potential of detecting B-8 solar neutrinos at JUNO. Chin. Phys. C 2021, 45, 023004. [Google Scholar] [CrossRef]
- Askins, M.; Bagdasarian, Z.; Barros, N.; Beier, E.W.; Blucher, E.; Bonventre, R.; Zuber, K. THEIA: An advanced optical neutrino detector. Eur. Phys. J. C 2020, 80, 416. [Google Scholar] [CrossRef]
- Gando, A.; Gando, Y.; Hachiya, T.; Ha Minh, M.; Hayashida, S.; Honda, Y.; Hosokawa, K.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; et al. Precision Analysis of the 136Xe Two-Neutrino ββ Spectrum in KamLAND-Zen and Its Impact on the Quenching of Nuclear Matrix Elements. Phys. Rev. Lett. 2019, 122, 192501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albanese, V.; Alves, R.; Anderson, M.; Andringa, S.; Anselmo, L.; Arushanova, E.; Asahi, S.; Askins, M.; Auty, D.; Back, A.; et al. The SNO+ experiment. J. Instrum. 2021, 16, P08059. [Google Scholar] [CrossRef]
- Andriamirado, M.; Balantekin, A.B.; Band, H.R.; Bass, C.D.; Bergeron, D.E.; Bowden, N.S.; Bryan, C.D.; Carr, R.; Classen, T.; Conant, A.J.; et al. PROSPECT-II physics opportunities. J. Phys. G Nucl. Part. Phys. 2022, 49, 070501. [Google Scholar] [CrossRef]
- Akindele, T.; Anderson, T.; Anderssen, E.; Askins, M.; Bohles, M.; Bacon, A.J.; Bagdasarian, Z.; Baldoni, A.; Barna, A.; Barros, N.; et al. A Call to Arms Control: Synergies between Nonproliferation Applications of Neutrino Detectors and Large-Scale Fundamental Neutrino Physics Experiments. arXiv 2022, arXiv:2203.00042. [Google Scholar] [CrossRef]
- Akindele, O.A.; Berryman, J.M.; Bowden, N.S.; Carr, R.; Conant, A.J.; Huber, P.; Langford, T.J.; Link, J.M.; Littlejohn, B.R.; Fernandez-Moroni, G.; et al. High Energy Physics Opportunities Using Reactor Antineutrinos. arXiv 2022, arXiv:2203.07214. [Google Scholar] [CrossRef]
- Orebi Gann, G.D.; Zuber, K.; Bemmerer, D.; Serenelli, A. The Future of Solar Neutrinos. Annu. Rev. Nucl. Part. Sci. 2021, 71, 491–528. [Google Scholar] [CrossRef]
- Galbiati, C.; Misiaszek, M.; Rossi, N. α/β discrimination in Borexino. Eur. Phys. J. A 2016, 52, 86. [Google Scholar] [CrossRef]
- Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Biondi, R.; Bravo, D.; et al. First Directional Measurement of Sub-MeV Solar Neutrinos with Borexino. Phys. Rev. Lett. 2022, 128, 091803. [Google Scholar] [CrossRef]
- Birks, J. The Theory and Practice of Scintillation Counting; Pergamon Press: Oxford, UK, 1964. [Google Scholar] [CrossRef]
- Doering, J.P. Electronic energy levels of benzene below 7 eV. J. Chem. Phys. 1977, 67, 4065–4070. [Google Scholar] [CrossRef]
- Franck, J.; Dymond, E.G. Elementary processes of photochemical reactions. Trans. Faraday Soc. 1926, 21, 536–542. [Google Scholar] [CrossRef]
- Condon, E. A Theory of Intensity Distribution in Band Systems. Phys. Rev. 1926, 28, 1182–1201. [Google Scholar] [CrossRef]
- Knoll, G.F. Radiation Detection and Measurement, 3rd ed.; John Wiley and Sons: New York, NY, USA, 2000. [Google Scholar]
- Marrodán Undagoitia, T.; von Feilitzsch, F.; Oberauer, L.; Potzel, W.; Ulrich, A.; Winter, J.; Wurm, M. Fluorescence decay-time constants in organic liquid scintillators. Rev. Sci. Instruments 2009, 80, 043301. [Google Scholar] [CrossRef] [Green Version]
- O’Keeffe, H.; O’Sullivan, E.; Chen, M. Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO+ experiment. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 640, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, P.; Ortica, F.; Ranucci, G.; Romani, A. Decay time and pulse shape discrimination of liquid scintillators based on novel solvents. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 701, 133–144. [Google Scholar] [CrossRef]
- Li, X.B.; Xiao, H.L.; Cao, J.; Li, J.; Ruan, X.C.; Heng, Y.K. Timing properties and pulse shape discrimination of LAB-based liquid scintillator. Chin. Phys. C 2011, 35, 1026. [Google Scholar] [CrossRef]
- Bollinger, L.M.; Thomas, G.E. Measurement of the Time Dependence of Scintillation Intensity by a Delayed-Coincidence Method. Rev. Sci. Instruments 1961, 32, 1044–1050. [Google Scholar] [CrossRef]
- Buck, C.; Yeh, M. Metal-loaded organic scintillators for neutrino physics. J. Phys. G Nucl. Part. Phys. 2016, 43, 093001. [Google Scholar] [CrossRef]
- Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 1948, 437, 55–75. [Google Scholar] [CrossRef]
- Dexter, D.L. A Theory of Sensitized Luminescence in Solids. J. Chem. Phys. 1953, 21, 836–850. [Google Scholar] [CrossRef]
- Buck, C.; Gramlich, B.; Wagner, S. Light propagation and fluorescence quantum yields in liquid scintillators. J. Instrum. 2015, 10, P09007. [Google Scholar] [CrossRef] [Green Version]
- Aberle, C.; Buck, C.; Hartmann, F.X.; Schonert, S. Light yield and energy transfer in a new Gd-loaded liquid scintillator. Chem. Phys. Lett. 2011, 516, 257–262. [Google Scholar] [CrossRef]
- Brown, F.H.; Furst, M.; Kallamann, H. Light and high energy induced energy transfer in liquid and rigid organic scintillators. Discuss. Faraday Soc. 1959, 27, 43–56. [Google Scholar] [CrossRef]
- Aberle, C.; Buck, C.; Hartmann, F.X.; Schönert, S.; Wagner, S. Light output of Double Chooz scintillators for low energy electrons. J. Instrum. 2011, 6, P11006. [Google Scholar] [CrossRef]
- Chou, C.N. The Nature of the Saturation Effect of Fluorescent Scintillators. Phys. Rev. 1952, 87, 904–905. [Google Scholar] [CrossRef]
- Wright, G.T. Scintillation Response of Organic Phosphors. Phys. Rev. 1953, 91, 1282–1283. [Google Scholar] [CrossRef]
- Voltz, R.; Laustriat, G. Radioluminescence des milieux organiques I. Étude cinétique. J. Phys. Fr. 1968, 29, 159–166. [Google Scholar] [CrossRef]
- Ronzio, A.R.; Cowan, C.L.; Reines, F. Liquid Scintillators for Free Neutrino Detection. Rev. Sci. Instruments 1958, 29, 146–147. [Google Scholar] [CrossRef]
- Masetti, F.; Elisei, F.; Mazzucato, U. Optical study of a large-scale liquid-scintillator detector. J. Lumin. 1996, 68, 15–25. [Google Scholar] [CrossRef]
- Mufson, S.; Baugh, B.; Bower, C.; Coan, T.; Cooper, J.; Corwin, L.; Karty, J.; Mason, P.; Messier, M.; Pla-Dalmau, A.; et al. Liquid scintillator production for the NOvA experiment. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 799, 1–9. [Google Scholar] [CrossRef]
- Suekane, F.; Iwamoto, T.; Ogawa, H.; Tajima, O.; Watanabe, H. An Overview of the KamLAND 1-kiloton Liquid Scintillator. arXiv 2004, arXiv:physics/0404071. [Google Scholar] [CrossRef]
- Piepke, A.G.; Moser, S.W.; Novikov, V.M. Development of a Gd loaded liquid scintillator for electron anti-neutrino spectroscopy. Nucl. Instrum. Meth. A 1999, 432, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Abbes, M.; Achkar, B.; Ait-Boubker, S.; Aleksan, R.; Avenier, M.; Bagieu, G.; Ballansat, J.; Barnoux, C.; Bazzoli, R.; Berger, J.; et al. The Bugey 3 neutrino detector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 374, 164–187. [Google Scholar] [CrossRef]
- Gando, Y.; Gando, A.; Hachiya, T.; Hayashida, S.; Hosokawa, K.; Ikeda, H.; Mitsui, T.; Nakada, T.; Obara, S.; Ozaki, H.; et al. The nylon balloon for xenon loaded liquid scintillator in KamLAND-Zen 800 neutrinoless double-beta decay search experiment. J. Instrum. 2021, 16, P08023. [Google Scholar] [CrossRef]
- Aberle, C.; Buck, C.; Gramlich, B.; Hartmann, F.X.; Lindner, M.; Schonert, S.; Schwan, U.; Wagner, S.; Watanabe, H. Large scale Gd-beta-diketonate based organic liquid scintillator production for antineutrino detection. J. Instrum. 2012, 7, P06008. [Google Scholar] [CrossRef]
- Buck, C.; Gramlich, B.; Lindner, M.; Roca, C.; Schoppmann, S. Production and properties of the liquid scintillators used in the STEREO reactor neutrino experiment. J. Instrum. 2019, 14, P01027. [Google Scholar] [CrossRef] [Green Version]
- Back, H.; Balata, M.; de Bari, A.; Beau, T.; de Bellefon, A.; Bellini, G.; Benziger, J.; Bonetti, S.; Brigatti, A.; Buck, C.; et al. Study of phenylxylylethane (PXE) as scintillator for low energy neutrino experiments. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 585, 48–60. [Google Scholar] [CrossRef]
- Xiao, H.L.; Li, X.B.; Zheng, D.; Cao, J.; Wen, L.J.; Wang, N.Y. Study of absorption and re-emission processes in a ternary liquid scintillation system. Chin. Phys. C 2010, 34, 1724. [Google Scholar] [CrossRef] [Green Version]
- Ashenfelter, J.; Balantekin, A.; Band, H.; Bass, C.; Bergeron, D.; Berish, D.; Bignell, L.; Bowden, N.; Brodsky, J.; Bryan, C.; et al. Lithium-loaded liquid scintillator production for the PROSPECT experiment. J. Instrum. 2019, 14, P03026. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.; Andringa, S.; Anselmo, L.; Arushanova, E.; Asahi, S.; Askins, M.; Auty, D.; Back, A.; Barnard, Z.; Barros, N.; et al. Development, characterisation, and deployment of the SNO+ liquid scintillator. J. Instrum. 2021, 16, P05009. [Google Scholar] [CrossRef]
- Beriguete, W.; Cao, J.; Ding, Y.; Hans, S.; Heeger, K.M.; Hu, L.; Huang, A.; Luk, K.B.; Nemchenok, I.; Qi, M.; et al. Production of a gadolinium-loaded liquid scintillator for the Daya Bay reactor neutrino experiment. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2014, 763, 82–88. [Google Scholar] [CrossRef] [Green Version]
- Park, J.S.; Lee, J.; Yeo, I.S.; Choi, W.Q.; Ahn, J.K.; Choi, J.H.; Yu, I. Production and optical properties of Gd-loaded liquid scintillator for the RENO neutrino detector. Nucl. Instrum. Meth. A 2013, 707, 45–53. [Google Scholar] [CrossRef]
- Kim, B.R.; Kim, B.R.; Han, B.; Jeon, E.; Joo, K.K.; Kim, H.J.; Kim, H.; Siyeon, K. Development and Mass Production of a Mixture of LAB- and DIN-based Gadolinium-loaded Liquid Scintillator for the NEOS Short-baseline Neutrino Experiment. J. Radioanal. Nucl. Chem. 2016, 310, 311–316. [Google Scholar] [CrossRef] [Green Version]
- Abusleme, A.; Adam, T.; Ahmad, S.; Aiello, S.; Akram, M.; Ali, N.; An, F.; An, G.; An, Q.; Andronico, G.; et al. Optimization of the JUNO liquid scintillator composition using a Daya Bay antineutrino detector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 988, 164823. [Google Scholar] [CrossRef]
- Steiger, H.T.J. TAO—The Taishan Antineutrino Observatory. Instruments 2022, 6, 50. [Google Scholar] [CrossRef]
- Chen, M.C. SNO and SNO+. AIP Conf. Proc. 2007, 944, 25–30. [Google Scholar] [CrossRef]
- Marrodán Undagoitia, T.; von Feilitzsch, F.; Oberauer, L.; Potzel, W.; Ulrich, A.; Winter, J.; Wurm, M. Spectroscopy of electron-induced fluorescence in organic liquid scintillators. Eur. Phys. J. D 2010, 57, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, M.; Lindsey, J.S. Database of Absorption and Fluorescence Spectra of >300 Common Compounds for use in PhotochemCAD. Photochem. Photobiol. 2018, 94, 290–327. [Google Scholar] [CrossRef] [Green Version]
- Reeder, R.; Dieterle, B.; Gregory, C.; Schaefer, F.; Schum, K.; Strossman, W.; Smith, D.; Christofek, L.; Johnston, K.; Louis, W.; et al. Dilute scintillators for large-volume tracking detectors. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1993, 334, 353–366. [Google Scholar] [CrossRef]
- Athanassopoulos, C.; Auerbach, L.; Bauer, D.; Bolton, R.; Burman, R.; Cohen, I.; Caldwell, D.; Dieterle, B.; Donahue, J.; Eisner, A.; et al. The liquid scintillator neutrino detector and LAMPF neutrino source. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 388, 149–172. [Google Scholar] [CrossRef]
- Apollonio, M.; Baldini, A.; Bemporad, C.; Caffau, E.; Cei, F.; Declais, Y.; Vyrodov, V. Search for neutrino oscillations on a long baseline at the CHOOZ nuclear power station. Eur. Phys. J. C 2003, 27, 331–374. [Google Scholar] [CrossRef] [Green Version]
- Sidorenkov, A.; Borshchev, O.; Fazliakhmetov, A.; Lukanov, A.; Lubsorzhiev, B.; Lubsorzhiev, S.; Voronin, D. Characterization of a high light yield liquid scintillator with a novel organosilicon fluor developed for astroparticle physics experiments. Eur. Phys. J. C 2022, 82, 1038. [Google Scholar] [CrossRef]
- Bouguer, P. Essai d’Optique sur la Gradation de la Lumiere; Claude Jombert: Paris, France, 1729. [Google Scholar]
- Lambert, J. Photometria Sive de Mensura et Gradibus Luminis, Colorum et Umbrae; Sumptibus Viduae Eberhardi Klett: Augsburg, Germany, 1760. [Google Scholar]
- Beer, A. Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten. Ann. Phys. 1852, 162, 78–88. [Google Scholar] [CrossRef] [Green Version]
- Mayerhöfer, T.G.; Pahlow, S.; Popp, J. The Bouguer-Beer-Lambert Law: Shining Light on the Obscure. ChemPhysChem 2020, 21, 2029–2046. [Google Scholar] [CrossRef]
- Lord Rayleigh, F. XXXIV. On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Philos. Mag. J. Sci. 1899, 47, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Wurm, M.; von Feilitzsch, F.; Göger-Neff, M.; Hofmann, M.; Lachenmaier, T.; Lewke, T.; Undagoitia, T.M.; Meindl, Q.; Möllenberg, R.; Oberauer, L.; et al. Optical scattering lengths in large liquid-scintillator neutrino detectors. Rev. Sci. Instruments 2010, 81, 053301. [Google Scholar] [CrossRef] [Green Version]
- Benziger, J.; Cadonati, L.; Calaprice, F.; Chen, M.; Corsi, A.; Dalnoki-Veress, F.; Fernholz, R.; Ford, R.; Galbiati, C.; Goretti, A.; et al. A scintillator purification system for the Borexino solar neutrino detector. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2008, 587, 277–291. [Google Scholar] [CrossRef] [Green Version]
- Ford, R.J. A scintillator purification plant and fluid handling system for SNO+. AIP Conf. Proc. 2015, 1672, 080003. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, P.; Montuschi, M.; Formozov, A.; Brigatti, A.; Parmeggiano, S.; Pompilio, R.; Depnering, W.; Franke, S.; Gaigher, R.; Joutsenvaara, J.; et al. Distillation and stripping pilot plants for the JUNO neutrino detector: Design, operations and reliability. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 925, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Ling, X.; Zhu, Z. Radon measurement in liquid scintillator with nitrogen stripping method. Rad. Det. Tech. Meth. 2022, 6, 302–305. [Google Scholar] [CrossRef]
- Henry, W. Experiments on the quantity of gases absorbed by water, at different temperatures, and under different pressures. Phil. Trans. R. Soc. 1803, 93, 29–274. [Google Scholar] [CrossRef] [Green Version]
- Keefer, G.; Grant, C.; Piepke, A.; Ebihara, T.; Ikeda, H.; Kishimoto, Y.; Kibe, Y.; Koseki, Y.; Ogawa, M.; Shirai, J.; et al. Laboratory studies on the removal of radon-born lead from KamLAND’s organic liquid scintillator. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2015, 769, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Fang, J.; Zhou, L.; Hu, W.; Liu, W.; Ding, Y.; Liu, M.; Yu, B.; Sun, X.; Sun, L.; et al. Development of water extraction system for liquid scintillator purification of JUNO. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1027, 166251. [Google Scholar] [CrossRef]
- Niedermeier, L.; Grieb, C.; Oberauer, L.; Korschinek, G.; von Feilitzsch, F. Experimental scintillator purification tests with silica gel chromatography. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2006, 568, 915–922. [Google Scholar] [CrossRef]
- Cherenkov, P.A. Visible luminescence of pure liquids under the influence of γ-radiation. Dokl. Akad. Nauk SSSR 1934, 2, 451–454. [Google Scholar] [CrossRef] [Green Version]
- Frank, I.M.; Tamm, I.E. Coherent visible radiation of fast electrons passing through matter. Compt. Rend. Acad. Sci. URSS 1937, 14, 109–114. [Google Scholar] [CrossRef]
- Shimizu, I.; Chen, M. Double Beta Decay Experiments With Loaded Liquid Scintillator. Front. Phys. 2019, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Buck, C.; Hartmann, F.; Schönert, S.; Schwan, U. Development of an optically pure In b-diketonate for the scintillator of an 115-In-loaded solar neutrino detector. J. Radioanal. Nucl. Chem. 2003, 258, 255–263. [Google Scholar] [CrossRef]
- Fukuda, Y.; Moriyama, S.; Ogawa, I. Development of liquid scintillator containing a zirconium complex for neutrinoless double beta decay experiment. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2013, 732, 397–402. [Google Scholar] [CrossRef] [Green Version]
- JUNO Collaboration; Abusleme, A.; Adam, T.; Ahmad, S.; Aiello, S.; Akram, M.; Ali, N.; An, F.; An, G.; An, Q.; et al. TAO Conceptual Design Report: A Precision Measurement of the Reactor Antineutrino Spectrum with Sub-percent Energy Resolution. arXiv 2020, arXiv:2005.08745. [Google Scholar] [CrossRef]
- Xie, Z.; Cao, J.; Ding, Y.; Liu, M.; Sun, X.; Wang, W.; Xie, Y. A liquid scintillator for a neutrino detector working at -50 degree. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2021, 1009, 165459. [Google Scholar] [CrossRef]
- Yeh, M.; Hans, S.; Beriguete, W.; Rosero, R.; Hu, L.; Hahn, R.; Diwan, M.; Jaffe, D.; Kettell, S.; Littenberg, L. A new water-based liquid scintillator and potential applications. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2011, 660, 51–56. [Google Scholar] [CrossRef]
- Bignell, L.; Beznosko, D.; Diwan, M.; Hans, S.; Jaffe, D.; Kettell, S.; Rosero, R.; Themann, H.; Viren, B.; Worcester, E.; et al. Characterization and modeling of a Water-based Liquid Scintillator. J. Instrum. 2015, 10, P12009. [Google Scholar] [CrossRef] [Green Version]
- Onken, D.R.; Moretti, F.; Caravaca, J.; Yeh, M.; Orebi Gann, G.D.; Bourret, E.D. Time response of water-based liquid scintillator from X-ray excitation. Mater. Adv. 2020, 1, 71–76. [Google Scholar] [CrossRef]
- Steiger, H.T.J.; Böhles, M.; Dörflinger, D.; Fahrendholz, U.; Guffanti, D.; Mpoukouvalas, A.; Oberauer, L.; Steiger, A.; Stock, M.R.; Wurm, M.; et al. Development, Characterization and Production of a novel Water-based Liquid Scintillator based on the Surfactant TRITON™X-100. J. Instrum. 2023; in press. [Google Scholar]
- Anderson, T.; Anderssen, E.; Askins, M.; Bacon, A.J.; Bagdasarian, Z.; Baldoni, A.; Barros, N.; Bartoszek, L.; Bergevin, M.; Bernstein, A.; et al. EOS: A demonstrator of hybrid optical detector technology. arXiv 2022, arXiv:2211.11969. [Google Scholar] [CrossRef]
- Anghel, I.; Beacom, J.F.; Bergevin, M.; Blanco, C.; Catano-Mur, E.; Di Lodovico, F.; Yeh, M. Letter of Intent: The Accelerator Neutrino Neutron Interaction Experiment (ANNIE). arXiv 2015, arXiv:1504.01480. [Google Scholar] [CrossRef]
- Askins, M.; Bergevin, M.; Bernstein, A.; Dazeley, S.; Dye, S.T.; Handler, T.; Hatzikoutelis, A.; Hellfeld, D.; Jaffke, P.; Kamyshkov, Y.; et al. The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos. arXiv 2015, arXiv:1502.01132. [Google Scholar] [CrossRef]
- Fischer, V.; Tiras, E. Water-based Liquid Scintillator detector as a new technology testbed for neutrino studies in Turkey. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 969, 163931. [Google Scholar] [CrossRef] [Green Version]
- Bignell, L.; Diwan, M.; Hans, S.; Jaffe, D.; Rosero, R.; Vigdor, S.; Viren, B.; Worcester, E.; Yeh, M.; Zhang, C. Measurement of radiation damage of water-based liquid scintillator and liquid scintillator. J. Instrum. 2015, 10, P10027. [Google Scholar] [CrossRef] [Green Version]
- Sawatzki, J.; Wurm, M.; Kresse, D. Detecting the diffuse supernova neutrino background in the future water-based liquid scintillator detector Theia. Phys. Rev. D 2021, 103, 023021. [Google Scholar] [CrossRef]
- Bat, A.; Tiras, E.; Fischer, V.; Kamislioglu, M. Low Energy Neutrino Detection with a Portable Water-based Liquid Scintillator Detector. arXiv 2021, arXiv:2112.03418. [Google Scholar]
- Land, B.; Bagdasarian, Z.; Caravaca, J.; Smiley, M.; Yeh, M.; Orebi Gann, G. MeV-scale performance of water-based and pure liquid scintillator detectors. Phys. Rev. D 2021, 103, 052004. [Google Scholar] [CrossRef]
- Zsoldos, S.; Bagdasarian, Z.; Orebi Gann, G.D.; Barna, A.; Dye, S. Antineutrino sensitivity at THEIA. arXiv 2022, arXiv:2204.12278. [Google Scholar]
- Bonventre, R.; Orebi Gann, G.D. Sensitivity of a low threshold directional detector to CNO-cycle solar neutrinos. Eur. Phys. J. C 2018, 78, 435. [Google Scholar] [CrossRef] [Green Version]
- Caravaca, J.; Descamps, F.B.; Land, B.J.; Wallig, J.; Yeh, M.; Orebi Gann, G.D. Experiment to demonstrate separation of Cherenkov and scintillation signals. Phys. Rev. C 2017, 95, 055801. [Google Scholar] [CrossRef] [Green Version]
- Caravaca, J.; Descamps, F.B.; Land, B.J.; Yeh, M.; Orebi Gann, G.D. Cherenkov and Scintillation Light Separation in Organic Liquid Scintillators. Eur. Phys. J. C 2017, 77, 811. [Google Scholar] [CrossRef]
- Ford, M.J.; Zaitseva, N.P.; Carman, M.L.; Dazeley, S.A.; Bernstein, A.; Glenn, A.; Akindele, O.A. Pulse-shape discrimination in water-based scintillators. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2022, 1036, 166854. [Google Scholar] [CrossRef]
- Aberle, C.; Elagin, A.; Frisch, H.J.; Wetstein, M.; Winslow, L. Measuring directionality in double-beta decay and neutrino interactions with kiloton-scale scintillation detectors. J. Instrum. 2014, 9, P06012. [Google Scholar] [CrossRef]
- Lyashenko, A.V.; Adams, B.W.; Aviles, M.; Cremer, T.; Ertley, C.D.; Foley, M.R.; Spieglan, E. Performance of Large Area Picosecond Photo-Detectors (LAPPD™). Nucl. Instrum. Meth. A 2020, 958, 162834. [Google Scholar] [CrossRef] [Green Version]
- Minot, M.; Adams, B.; Aviles, M.; Bond, J.; Cremer, T.; Foley, M.; Lyashenko, A.; Popecki, M.; Stochaj, M.; Worstell, W.; et al. Large Area Picosecond Photodetector (LAPPD™)—Pilot production and development status. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 936, 527–531. [Google Scholar] [CrossRef]
- Kaptanoglu, T.; Callaghan, E.J.; Yeh, M.; Orebi Gann, G.D. Cherenkov and scintillation separation in water-based liquid scintillator using an LAPPD™. Eur. Phys. J. C 2022, 82, 169. [Google Scholar] [CrossRef]
- Kaptanoglu, T.; Luo, M.; Klein, J. Cherenkov and Scintillation Light Separation Using Wavelength in LAB Based Liquid Scintillator. J. Instrum. 2019, 14, T05001. [Google Scholar] [CrossRef]
- Kaptanoglu, T.; Luo, M.; Land, B.; Bacon, A.; Klein, J.R. Spectral photon sorting for large-scale Cherenkov and scintillation detectors. Phys. Rev. D 2020, 101, 072002. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.W.; Choi, J.Y.; Joo, K.K.; Woo, H.J. Development of water-based liquid scintillator based on hydrophilic-lipophilic balance index. Phys. Scr. 2022, 97, 045304. [Google Scholar] [CrossRef]
- Caravaca, J.; Land, B.J.; Yeh, M.; Orebi Gann, G.D. Characterization of water-based liquid scintillator for Cherenkov and scintillation separation. Eur. Phys. J. C 2020, 80, 867. [Google Scholar] [CrossRef]
- Callaghan, E.J.; Goldblum, B.L.; Brown, J.A.; Laplace, T.A.; Manfredi, J.J.; Yeh, M.; Orebi Gann, G.D. Measurement of proton light yield of water-based liquid scintillator. arXiv 2022, arXiv:2210.03876. [Google Scholar]
- Elagin, A.; Frisch, H.; Naranjo, B.; Ouellet, J.; Winslow, L.; Wongjirad, T. Separating Double-Beta Decay Events from Solar Neutrino Interactions in a Kiloton-Scale Liquid Scintillator Detector By Fast Timing. Nucl. Instrum. Meth. A 2017, 849, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Liu, Q.; Zheng, Y.; Wang, Z.; Chen, S. Reconstruction Algorithm for a Novel Cherenkov Scintillation Detector. arXiv 2022, arXiv:2209.13772. [Google Scholar]
- Wei, H.; Wang, Z.; Chen, S. Discovery potential for supernova relic neutrinos with slow liquid scintillator detectors. Phys. Lett. B 2017, 769, 255–261. [Google Scholar] [CrossRef]
- Li, M.; Guo, Z.; Yeh, M.; Wang, Z.; Chen, S. Separation of scintillation and Cherenkov lights in linear alkyl benzene. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 830, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Gruszko, J.; Naranjo, B.; Daniel, B.; Elagin, A.; Gooding, D.; Grant, C.; Ouellet, J.; Winslow, L. Detecting Cherenkov light from 1–2 MeV electrons in linear alkylbenzene. J. Instrum. 2019, 14, P02005. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Yeh, M.; Zhang, R.; Cao, D.W.; Qi, M.; Wang, Z.; Chen, S. Slow liquid scintillator candidates for MeV-scale neutrino experiments. Astropart. Phys. 2019, 109, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Biller, S.D.; Leming, E.J.; Paton, J.L. Slow fluors for effective separation of Cherenkov light in liquid scintillators. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2020, 972, 164106. [Google Scholar] [CrossRef]
- Cabrera, A.; Abusleme, A.; dos Anjos, J.; Bezerra, T.J.C.; Bongrand, M.; Bourgeois, C.; Breton, D.; Buck, C.; Busto, J.; Calvo, E.; et al. Neutrino physics with an opaque detector. Commun. Phys. 2021, 4, 273. [Google Scholar] [CrossRef]
- Cabrera, A. LiquidO Opaque Neutrino Detection: New Results and Status. Zenodo 2022. [Google Scholar] [CrossRef]
- Buck, C.; Gramlich, B.; Schoppmann, S. Novel opaque scintillator for neutrino detection. J. Instrum. 2019, 14, P11007. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S.; Grassi, M.; Cabrera, A. A hybrid organic/inorgaic scintillator for high performance measurements. arXiv 2018, arXiv:1807.00628. [Google Scholar] [CrossRef]
- Cabrera, A. The SuperChooz Experiment: Unveiling the Opportunity; CERN: Geneva, Switzerland, 2022; Available online: https://indico.cern.ch/event/1215214/ (accessed on 1 October 2022).
- Cabrera, A. LiquidO: First Opaque Detector for ββ Decay? PoS 2019, NOW2018, 028. [Google Scholar] [CrossRef]
- Tang, J.; Vihonen, S.; Wang, T. Prospects and requirements of opaque detectors in accelerator neutrino experiments. Phys. Rev. D 2020, 102, 013006. [Google Scholar] [CrossRef]
- Dalla Palma, M.; Carturan, S.; Degerlier, M.; Marchi, T.; Cinausero, M.; Gramegna, F.; Quaranta, A. Non-toxic liquid scintillators with high light output based on phenyl-substituted siloxanes. Opt. Mater. 2015, 42, 111–117. [Google Scholar] [CrossRef]
- Quaranta, A.; Carturan, S.; Marchi, T.; Cinausero, M.; Scian, C.; Kravchuk, V.; Degerlier, M.; Gramegna, F.; Poggi, M.; Maggioni, G. Doping of polysiloxane rubbers for the production of organic scintillators. Opt. Mater. 2010, 32, 1317–1320. [Google Scholar] [CrossRef]
- Bonhomme, A.; Buck, C.; Gramlich, B.; Raab, M. Safe liquid scintillators for large scale detectors. J. Instrum. 2022, 17, P11025. [Google Scholar] [CrossRef]
- Shirasaki, Y.; Supran, G.; Bawendi, M.; Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photonics 2013, 7, 13–23. [Google Scholar] [CrossRef]
- Winslow, L.; Simpson, R. Characterizing quantum-dot-doped liquid scintillator for applications to neutrino detectors. J. Instrum. 2012, 7, P07010. [Google Scholar] [CrossRef]
- Efros, A.L.; Nesbitt, D.J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 2016, 11, 661–671. [Google Scholar] [CrossRef]
- Aberle, C.; Li, J.J.; Weiss, S.; Winslow, L. Optical properties of quantum-dot-doped liquid scintillators. J. Instrum. 2013, 8, P10015. [Google Scholar] [CrossRef] [Green Version]
- Graham, E.; Gooding, D.; Gruszko, J.; Grant, C.; Naranjo, B.; Winslow, L. Light yield of Perovskite nanocrystal-doped liquid scintillator. J. Instrum. 2019, 14, P11024. [Google Scholar] [CrossRef] [Green Version]
- Dropiewski, K.; Minns, A.; Yakimov, M.; Tokranov, V.; Murat, P.; Oktyabrsky, S. Optical Properties of InAs Quantum Dots/GaAs Waveguides for Ultra-fast Scintillators. J. Lumin. 2020, 220, 116952. [Google Scholar] [CrossRef]
- Morton-Blake, I.; Biller, S.D. Alternative design for large scale liquid scintillator detectors. Phys. Rev. D 2022, 105, 072003. [Google Scholar] [CrossRef]
Molecule | Formula | Density | Flash Point | abs. max. | em. max. |
---|---|---|---|---|---|
PC | ~0.88 kg/L | ~148 C | 267 nm | 290 nm | |
toluene | ~0.87 kg/L | ~104 C | 262 nm | 290 nm | |
anisole | ~0.99 kg/L | ~143 C | 271 nm | 293 nm | |
LAB | ~0.87 kg/L | ~140 C | 260 nm | 284 nm | |
DIN | ~0.96 kg/L | >140 C | 279 nm | 338 nm | |
o-PXE | ~0.99 kg/L | ~167 C | 269 nm | 290 nm | |
n-dodecane | ~0.75 kg/L | ~171 C | – | – | |
mineral oil | – | ~0.85 kg/L | >130 C | – | – |
PPO | – | – | 303 nm | 358 nm | |
PBD | – | – | 302 nm | 358 nm | |
butyl-PBD | – | – | 302 nm | 361 nm | |
BPO | – | – | 320 nm | 384 nm | |
p-TP | – | – | 276 nm | 338 nm | |
bis-MSB | – | – | 345 nm | 418 nm | |
TBP | – | – | 347 nm | 455 nm | |
POPOP | – | – | 360 nm | 411 nm | |
PMP | – | – | 295 nm | 425 nm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoppmann, S. Review of Novel Approaches to Organic Liquid Scintillators in Neutrino Physics. Symmetry 2023, 15, 11. https://doi.org/10.3390/sym15010011
Schoppmann S. Review of Novel Approaches to Organic Liquid Scintillators in Neutrino Physics. Symmetry. 2023; 15(1):11. https://doi.org/10.3390/sym15010011
Chicago/Turabian StyleSchoppmann, Stefan. 2023. "Review of Novel Approaches to Organic Liquid Scintillators in Neutrino Physics" Symmetry 15, no. 1: 11. https://doi.org/10.3390/sym15010011
APA StyleSchoppmann, S. (2023). Review of Novel Approaches to Organic Liquid Scintillators in Neutrino Physics. Symmetry, 15(1), 11. https://doi.org/10.3390/sym15010011