Nonlocal Pseudo-Parabolic Equation with Memory Term and Conical Singularity: Global Existence and Blowup
Abstract
:1. Introduction
2. Preliminaries and Main Results
3. Properties of Potential Wells and Symmetric Structure of Invariant Sets
4. Proofs of the Main Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Budd, C.; Dold, B. Blow-up in a partial differential equation with conserved first integral. SIAM J. Appl. Math. 1993, 53, 718–742. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Yin, H.M. Semilinear parabolic equations with prescribed energy. Rend. Circ. Mat. Palermo 1995, 44, 479–505. [Google Scholar] [CrossRef] [Green Version]
- El Soufi, A.; Jazar, M.; Monneau, R. A Gamma-convergence argument for the blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. H Poincaré Anal. Non Linéaire 2007, 24, 17–39. [Google Scholar] [CrossRef] [Green Version]
- Jazar, M.; Kiwan, R. Blow-up of a non-local semilinear parabolic equation with Neumann boundary conditions. Ann. Inst. H Poincaré Anal. Non Linéaire 2008, 525, 215–218. [Google Scholar]
- Bebernes, J.; Bressan, A.; Lacey, A. Total blow-up versus single point blow-up. J. Differ. Equ. 1988, 73, 30–44. [Google Scholar] [CrossRef] [Green Version]
- Furter, J.; Grinfeld, M. Non-local interactions in population dynamics. J. Math. Biol. 1989, 27, 65–80. [Google Scholar] [CrossRef]
- Qu, C.Y.; Liang, B. Blow-up in a slow diffusive p-Laplace equation with the Neumann boundary conditions. Abstr. Appl. Anal. 2013, 2013, 5. [Google Scholar] [CrossRef] [Green Version]
- Qu, C.Y.; Bai, X.L.; Zheng, S.N. Blow-up and extinction in a nonlocal p-Laplace equation with Neumann boundary conditions. J. Math. Anal. Appl. 2014, 412, 326–333. [Google Scholar] [CrossRef]
- Guo, B.; Gao, W.J. Non-extinction of solutions to a fast diffusive p-Laplace equation with Neumann boundary conditions. J. Math. Anal. Appl. 2015, 422, 1527–1531. [Google Scholar] [CrossRef]
- Khelghati, A.; Baghaei, K. Blow-up phenomena for a nonlocal semilinear parabolic equation with positive initial energy. Comput. Math. Appl. 2015, 70, 896–902. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.H. Global existence and non-extinction of solutions to a fourth-order parabolic equation. Appl. Math. Lett. 2016, 61, 20–25. [Google Scholar] [CrossRef]
- Li, Q.W.; Gao, W.J.; Han, Y.Z. Global existence blow up and extinction for a class of thin-film equation. Nonlinear Anal. 2016, 147, 96–109. [Google Scholar] [CrossRef]
- Zhou, J. Blow-up for a thin-film equation with positive initial energy. J. Math. Anal. Appl. 2017, 446, 1133–1138. [Google Scholar] [CrossRef]
- Hao, A.J.; Zhou, J. Blowup, extinction and non-extinction for a nonlocal p-biharmonic parabolic equation. Appl. Math. Lett. 2017, 64, 198–204. [Google Scholar] [CrossRef]
- Sun, F.L.; Liu, L.S.; Wu, Y.H. Finite time blow-up for a thin-film equation with initial data at arbitrary energy level. J. Math. Anal. Appl. 2018, 458, 9–20. [Google Scholar] [CrossRef]
- Xu, G.Y.; Zhou, J. Global existence and finite time blow-up of the solution for a thin-film equation with high initial energy. J. Math. Anal. Appl. 2018, 458, 521–535. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Wei, Y. Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents. Ann. Glob. Anal. Geom. 2011, 39, 27–43. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Wei, Y. Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on a manifold with conical singularities. Calc. Var. Partial Differ. Equ. 2012, 43, 463–484. [Google Scholar] [CrossRef]
- Chen, H.; Liu, G.; Wei, Y. Global existence and nonexistence for semilinear parabolic equations with conical degeneration. J. Pseudo-Differ. Oper. Appl. 2012, 3, 329–349. [Google Scholar] [CrossRef]
- Li, G.; Yu, J.Y.; Liu, W.J. Global existence, exponential decay and finite time blow-up of solutions for a class of semilinear pseudo-parabolic equations with conical degeneration. J. Pseudo. Differ. Oper. Appl. 2017, 8, 629–660. [Google Scholar] [CrossRef]
- Di, H.F.; Shang, Y.D. Global well-posedness for a nonlocal semilinear pseudo-parabolic equation with conical degeneration. J. Differ. Equ. 2020, 269, 4566–4597. [Google Scholar] [CrossRef]
- Fan, H.; Liu, X. Multiple positive solutions for degenerate elliptic equations with critical cone Sobolev exponents on singular manifolds. Electron. J. Differ. Equ. 2013, 181, 22. [Google Scholar]
- Alimohammady, M.; Kalleji, M.K. Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration. J. Funct. Anal. 2013, 265, 2331–2356. [Google Scholar] [CrossRef]
- Alimohammady, M.; Cattani, C.; Kalleji, M.K. Invariance and existence analysis for semilinear hyperbolic equations with damping and conical singularity. J. Math. Anal. Appl. 2017, 455, 569–591. [Google Scholar] [CrossRef]
- Alimohammady, M.; Kalleji, M.K.; Karamali, G. Global results for semilinear hyperbolic equations with damping term on manifolds with conical singularity. Math. Meth. Appl. Sci. 2017, 40, 4160–4178. [Google Scholar] [CrossRef]
- Alimohammady, M.; Jafari, A.A.; Kalleji, M.K. Multiple solutions for non-homogenous degenerate Schördinger equations in cone Sobolev spaces. Indian J. Pure Appl. Math. 2017, 48, 133–146. [Google Scholar] [CrossRef]
- Luo, Y.B.; Xu, R.Z.; Yang, C. Global well-posedness for a class of semilinear hyperbolic equations with singular potentials onmanifolds with conical singularities. Calc. Var. 2022, 61, 47. [Google Scholar] [CrossRef]
- Alshin, A.B.; Korpusov, M.O.; Siveshnikov, A.G. Blow Up in Nonlinear Sobolev Type Equations; Walter de Gruyter: Berlin, Germany, 2011. [Google Scholar]
- Dzektser, E.S. Generalization of equations of motion of underground water with free surface. Dokl. Akad. Nauk SSSR 1972, 202, 1031–1033. [Google Scholar]
- Majdoub, M.; Mliki, E. Well-posedness for Hardy-Hénon parabolic equations with fractional Brownian noise. Anal. Math. Phys. 2021, 11, 8. [Google Scholar] [CrossRef]
- El-Borai, M.M.; El-Nadi, K.E.; Ahmed, H.M.; El-Owaidy, H.M.; Ghanem, A.S.; Sakthivel, R. Existence and stability for fractional parabolic integro-partial differential equations with fractional Brownian motion and nonlocal condition. Cogent Math. Stat. 2018, 5, 12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Zhang, J. Nonlocal Pseudo-Parabolic Equation with Memory Term and Conical Singularity: Global Existence and Blowup. Symmetry 2023, 15, 122. https://doi.org/10.3390/sym15010122
Yu J, Zhang J. Nonlocal Pseudo-Parabolic Equation with Memory Term and Conical Singularity: Global Existence and Blowup. Symmetry. 2023; 15(1):122. https://doi.org/10.3390/sym15010122
Chicago/Turabian StyleYu, Jiali, and Jihong Zhang. 2023. "Nonlocal Pseudo-Parabolic Equation with Memory Term and Conical Singularity: Global Existence and Blowup" Symmetry 15, no. 1: 122. https://doi.org/10.3390/sym15010122
APA StyleYu, J., & Zhang, J. (2023). Nonlocal Pseudo-Parabolic Equation with Memory Term and Conical Singularity: Global Existence and Blowup. Symmetry, 15(1), 122. https://doi.org/10.3390/sym15010122