Analytical Study of the Energy Loss Reduction during Three-Dimensional Engine Oil-Based Hybrid Nanofluid Flow by Using Cattaneo–Christov Model
Abstract
:1. Introduction
2. Mathematical Model of the Problem
3. Problem Solution by Homotopy Analysis Method
3.1. Convergence Analysis
4. Results and Discussion
5. Tables’ Discussion
6. Conclusions
- When the Hall current increases, the velocity gradient increases, while the dimensionless mass flux and the magnetic parameter decrease this profile.
- Both the velocity and temperature profiles fall with the increasing values of the ratio parameter.
- The higher values of the Prandtl number decrease the layer thickness of the thermal boundary.
- Both the temperature and concentration boundary layer show an opposite trend for the larger values of the Brownian motion parameter.
- The thermal and concentration parameters decrease the temperature and concentration boundary layers with their increasing values.
- At the surface, both the temperature and concentration profiles show an increasing trend for various values of the thermal and concentration boundary layers.
- The skin friction shows the opposite trend for the larger values of the ratio parameter .
- The graphs show that the hybrid nanofluid shows a fast increasing/decreasing trend, which implies further applications in cooling.
- The efficiency of the implemented technique is proven in Section 3.1 through the squared residual errors presented in Table 2.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Electrical conductivity | |
C | Concentration |
B | Uniform magnetic parameter strength T |
Local Nusselt number | |
Local Reynolds number | |
, | Local skin frictions |
Sherwood number along the x-axis | |
Prandtl number | |
Stretching velocity along the x-axis | |
Stretching velocity along the y-axis | |
T | Fluid temperature (K) |
Dimensionless temperature | |
f | Dimensionless velocity along the x-axis |
g | Dimensionless velocity along the y-axis |
Dimensionless temperature | |
Dimensionless concentration | |
Density | |
Dynamic viscosity | |
Specific heat | |
Hybrid nanofluid specific heat | |
Hybrid nanofluid dynamic viscosity | |
Hybrid nanofluid density | |
Mass flux | |
∞ | Condition at infinity |
0 | Reference condition |
w | Condition at the wall |
x, y, and z | Coordinates |
Similarity variable | |
Stretching ratio parameter | |
Schmidt number | |
t | Time (s) |
Hybrid nanofluid thermal conductivity | |
Base fluid thermal conductivity | |
Base fluid electrical conductivity | |
Hybrid nanofluid electrical conductivity | |
M | Magnetic parameter |
m | Hall parameter |
Velocity field | |
Heat flux | |
Mass flux | |
Energy relaxation parameter | |
c, d | References of velocity |
L | Characteristic length |
Variable magnetic field | |
Strength of the magnetic field | |
Concentration relaxation parameter | |
Brownian motion parameter | |
Adiabatic index | |
Suction/injection parameter | |
Thermo-migration parameter | |
Thermal relaxation parameter | |
Mass relaxation parameter | |
Thermophoretic parameter |
References
- Choi, S.U.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles; Technical report; Argonne National Lab.(ANL): Argonne, IL, USA, 1995.
- Eastman, J.A.; Choi, S.; Li, S.; Yu, W.; Thompson, L. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 2001, 78, 718–720. [Google Scholar] [CrossRef]
- Maïga, S.E.B.; Nguyen, C.T.; Galanis, N.; Roy, G. Heat transfer behaviors of nanofluids in a uniformly heated tube. Superlattices Microstruct. 2004, 35, 543–557. [Google Scholar] [CrossRef]
- Khan, W.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 2010, 53, 2477–2483. [Google Scholar] [CrossRef]
- Seth, G.; Kumar, B.; Nandkeolyar, R. MHD mixed convection stagnation point flow of a micropolar nanofluid adjacent to stretching sheet: A revised model with successive linearization method. J. Nanofluids 2019, 8, 620–630. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Ghahremanian, S.; Toghraie, D.; Roy, P. Effect of solid surface structure on the condensation flow of Argon in rough nanochannels with different roughness geometries using molecular dynamics simulation. Int. Commun. Heat Mass Transf. 2020, 117, 104741. [Google Scholar] [CrossRef]
- Mansoury, D.; Ilami Doshmanziari, F.; Rezaie, S.; Rashidi, M.M. Effect of Al2O3/water nanofluid on performance of parallel flow heat exchangers. J. Therm. Anal. Calorim. 2019, 135, 625–643. [Google Scholar] [CrossRef]
- Hatami, M.; Zhou, J.; Geng, J.; Song, D.; Jing, D. Optimization of a lid-driven T-shaped porous cavity to improve the nanofluids mixed convection heat transfer. J. Mol. Liq. 2017, 231, 620–631. [Google Scholar] [CrossRef]
- Jana, S.; Salehi-Khojin, A.; Zhong, W.H. Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim. Acta 2007, 462, 45–55. [Google Scholar] [CrossRef]
- Madhesh, D.; Parameshwaran, R.; Kalaiselvam, S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp. Therm. Fluid Sci. 2014, 52, 104–115. [Google Scholar] [CrossRef]
- Ho, C.; Huang, J.; Tsai, P.; Yang, Y. Preparation and properties of hybrid water-based suspension of Al2O3 nanoparticles and MEPCM particles as functional forced convection fluid. Int. Commun. Heat Mass Transf. 2010, 37, 490–494. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surfaces A: Physicochem. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Labib, M.N.; Nine, M.J.; Afrianto, H.; Chung, H.; Jeong, H. Numerical investigation on effect of base fluids and hybrid nanofluid in forced convective heat transfer. Int. J. Therm. Sci. 2013, 71, 163–171. [Google Scholar] [CrossRef]
- Moghadassi, A.; Ghomi, E.; Parvizian, F. A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 2015, 92, 50–57. [Google Scholar] [CrossRef]
- Daniel, Y.S.; Aziz, Z.A.; Ismail, Z.; Salah, F. Thermal radiation on unsteady electrical MHD flow of nanofluid over stretching sheet with chemical reaction. J. King Saud Univ.-Sci. 2019, 31, 804–812. [Google Scholar] [CrossRef]
- Khan, I. Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium. J. Mol. Liq. 2017, 233, 442–451. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Ismael, M.A. Magnetic field effect on mixed convection in lid-driven trapezoidal cavities filled with a Cu–water nanofluid with an aiding or opposing side wall. J. Therm. Sci. Eng. Appl. 2016, 8, 031009. [Google Scholar] [CrossRef] [Green Version]
- Alsabery, A.I.; Ismael, M.A.; Chamkha, A.J.; Hashim, I. Mixed convection of Al2O3-water nanofluid in a double lid-driven square cavity with a solid inner insert using Buongiorno’s two-phase model. Int. J. Heat Mass Transf. 2018, 119, 939–961. [Google Scholar] [CrossRef]
- Ellahi, R. The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions. Appl. Math. Model. 2013, 37, 1451–1467. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; D Ganji, D. Magnetohydrodynamic flow in a permeable channel filled with nanofluid. Sci. Iran. 2014, 21, 203–212. [Google Scholar]
- Seyyedi, S.M.; Dogonchi, A.; Hashemi-Tilehnoee, M.; Asghar, Z.; Waqas, M.; Ganji, D. A computational framework for natural convective hydromagnetic flow via inclined cavity: An analysis subjected to entropy generation. J. Mol. Liq. 2019, 287, 110863. [Google Scholar] [CrossRef]
- Rashidi, M.; Abelman, S.; Mehr, N.F. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int. J. Heat Mass Transf. 2013, 62, 515–525. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ellahi, R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int. J. Heat Mass Transf. 2015, 89, 799–808. [Google Scholar] [CrossRef]
- Biswas, N.; Mandal, D.K.; Manna, N.K.; Benim, A.C. Enhanced energy and mass transport dynamics in a thermo-magneto-bioconvective porous system containing oxytactic bacteria and nanoparticles: Cleaner energy application. Energy 2023, 263, 125775. [Google Scholar] [CrossRef]
- Manna, N.K.; Biswas, N.; Mandal, D.K.; Sarkar, U.; Öztop, H.F.; Abu-Hamdeh, N. Impacts of heater-cooler position and Lorentz force on heat transfer and entropy generation of hybrid nanofluid convection in quarter-circular cavity. Int. J. Numer. Methods Heat Fluid Flow, 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Biswas, N.; Mondal, M.K.; Manna, N.K.; Mandal, D.K.; Chamkha, A.J. Implementation of partial magnetic fields to magneto-thermal convective systems operated using hybrid-nanoliquid and porous media. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 5687–5704. [Google Scholar] [CrossRef]
- Mandal, D.K.; Biswas, N.; Manna, N.K.; Gorla, R.S.R.; Chamkha, A.J. Hybrid nanofluid magnetohydrodynamic mixed convection in a novel W-shaped porous system. Int. J. Numer. Methods Heat Fluid Flow, 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Biswas, N.; Mandal, D.K.; Manna, N.K.; Benim, A.C. Magneto-hydrothermal triple-convection in a W-shaped porous cavity containing oxytactic bacteria. Sci. Rep. 2022, 12, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.K.; Biswas, N.; Manna, N.K.; Gayen, D.K.; Gorla, R.S.R.; Chamkha, A.J. Thermo-fluidic transport process in a novel M-shaped cavity packed with non-Darcian porous medium and hybrid nanofluid: Application of artificial neural network (ANN). Phys. Fluids 2022, 34, 033608. [Google Scholar] [CrossRef]
- Mandal, D.; Biswas, N.; Manna, N.; Gorla, R. Magneto-thermal convection of hybrid nanofluid in a non-Darcian porous complex wavy enclosure. Eur. Phys. J. Spec. Top. 2022, 213, 2695–2712. [Google Scholar] [CrossRef]
- Sakiadis, B.C. Boundary-layer behavior on continuous solid surfaces: I. Boundary-layer equations for two-dimensional and axisymmetric flow. AIChE J. 1961, 7, 26–28. [Google Scholar] [CrossRef]
- Sakiadis, B. Boundary-layer behavior on continuous solid surfaces: II. The boundary layer on a continuous flat surface. AiChE J. 1961, 7, 221–225. [Google Scholar] [CrossRef]
- Sakiadis, B. Boundary-layer behavior on continuous solid surfaces: III. The boundary layer on a continuous cylindrical surface. AiChE J. 1961, 7, 467–472. [Google Scholar] [CrossRef]
- Crane, L.J. Flow past a stretching plate. Z. Angew. Math. Phys. ZAMP 1970, 21, 645–647. [Google Scholar] [CrossRef]
- Gupta, P.; Gupta, A. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 1977, 55, 744–746. [Google Scholar] [CrossRef]
- Devi, R.; Neeraja, A.; Reddy, N.B. Radiation effect on MHD slip flow past a stretching sheet with variable viscosity and heat source/sink. Int. J. Sci. Innov. Math. Res. 2015, 3, 8–17. [Google Scholar]
- Magyari, E.; Keller, B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D: Appl. Phys. 1999, 32, 577. [Google Scholar] [CrossRef]
- Wang, C. Liquid film on an unsteady stretching surface. Q. Appl. Math. 1990, 48, 601–610. [Google Scholar] [CrossRef] [Green Version]
- Miklavčič, M.; Wang, C. Viscous flow due to a shrinking sheet. Q. Appl. Math. 2006, 64, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, K. Boundary layer flow and heat transfer over an exponentially shrinking sheet. Chin. Phys. Lett. 2011, 28, 074701. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Vajravelu, K. Stagnation-point flow and heat transfer over an exponentially shrinking sheet. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2728–2734. [Google Scholar] [CrossRef]
- Bachok, N.; Ishak, A.; Pop, I. Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid. Int. J. Heat Mass Transf. 2012, 55, 8122–8128. [Google Scholar] [CrossRef]
- Sharma, R.; Ishak, A.; Nazar, R.; Pop, I. Boundary layer flow and heat transfer over a permeable exponentially shrinking sheet in the presence of thermal radiation and partial slip. J. Appl. Fluid Mech. 2014, 7, 125–134. [Google Scholar]
- Jusoh, R.; Nazar, R.; Pop, I. Magnetohydrodynamic boundary layer flow and heat transfer of nanofluids past a bidirectional exponential permeable stretching/shrinking sheet with viscous dissipation effect. J. Heat Transf. 2019, 141, 012406. [Google Scholar] [CrossRef]
- Dero, S.; Rohni, A.M.; Saaban, A. MHD micropolar nanofluid flow over an exponentially stretching/shrinking surface: Triple solutions. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 56, 165–174. [Google Scholar]
- Lund, L.A.; Omar, Z.; Khan, I. Quadruple solutions of mixed convection flow of magnetohydrodynamic nanofluid over exponentially vertical shrinking and stretching surfaces: Stability analysis. Comput. Methods Programs Biomed. 2019, 182, 105044. [Google Scholar] [CrossRef] [PubMed]
- Christov, C. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction. Mech. Res. Commun. 2009, 36, 481–486. [Google Scholar] [CrossRef]
- Rauf, A.; Abbas, Z.; Shehzad, S. Utilization of Maxwell-Cattaneo law for MHD swirling flow through oscillatory disk subject to porous medium. Appl. Math. Mech. 2019, 40, 837–850. [Google Scholar] [CrossRef]
- Sui, J.; Zheng, L.; Zhang, X. Boundary layer heat and mass transfer with Cattaneo–Christov double-diffusion in upper-convected Maxwell nanofluid past a stretching sheet with slip velocity. Int. J. Therm. Sci. 2016, 104, 461–468. [Google Scholar] [CrossRef]
- Hayat, T.; Muhammad, T.; Alsaedi, A.; Ahmad, B. Three-dimensional flow of nanofluid with Cattaneo–Christov double diffusion. Results Phys. 2016, 6, 897–903. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. Model and comparative study for flow of viscoelastic nanofluids with Cattaneo–Christov double diffusion. PLoS ONE 2017, 12, e0168824. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Qayyum, S.; Shehzad, S.A.; Alsaedi, A. Chemical reaction and heat generation/absorption aspects in flow of Walters-B nanofluid with Cattaneo–Christov double-diffusion. Results Phys. 2017, 7, 4145–4152. [Google Scholar] [CrossRef]
- Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. Three-dimensional flow of Prandtl fluid with Cattaneo–Christov double diffusion. Results Phys. 2018, 9, 290–296. [Google Scholar] [CrossRef]
- Ibrahim, W. Three dimensional rotating flow of Powell-Eyring nanofluid with non-Fourier’s heat flux and non-Fick’s mass flux theory. Results Phys. 2018, 8, 569–577. [Google Scholar] [CrossRef]
- Irfan, M.; Khan, M.; Khan, W. On model for three-dimensional Carreau fluid flow with Cattaneo–Christov double diffusion and variable conductivity: A numerical approach. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 1–10. [Google Scholar] [CrossRef]
- Iqbal, Z.; Khan, M.; Ahmed, A.; Ahmed, J.; Hafeez, A. Thermal energy transport in Burgers nanofluid flow featuring the Cattaneo–Christov double diffusion theory. Appl. Nanosci. 2020, 10, 5331–5342. [Google Scholar] [CrossRef]
- Ahmad, I.; Faisal, M.; Javed, T. Bi-directional stretched nanofluid flow with Cattaneo–Christov double diffusion. Results Phys. 2019, 15, 102581. [Google Scholar] [CrossRef]
- Rauf, A.; Shehzad, S.; Abbas, Z.; Hayat, T. Unsteady three-dimensional MHD flow of the micropolar fluid over an oscillatory disk with Cattaneo–Christov double diffusion. Appl. Math. Mech. 2019, 40, 1471–1486. [Google Scholar] [CrossRef]
- Fiza, M.; Alsubie, A.; Ullah, H.; Hamadneh, N.N.; Islam, S.; Khan, I. Three-dimensional rotating flow of MHD Jeffrey fluid flow between two parallel plates with impact of hall current. Math. Probl. Eng. 2021, 2021, 6626411. [Google Scholar] [CrossRef]
- Shamshuddin, M.; Salawu, S.; Ogunseye, H.; Mabood, F. Dissipative power-law fluid flow using spectral quasi linearization method over an exponentially stretchable surface with Hall current and power-law slip velocity. Int. Commun. Heat Mass Transf. 2020, 119, 104933. [Google Scholar] [CrossRef]
- Ramzan, M.; Gul, H.; Chung, J.D.; Kadry, S.; Chu, Y.M. Significance of Hall effect and Ion slip in a three-dimensional bioconvective Tangent hyperbolic nanofluid flow subject to Arrhenius activation energy. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
- Zangooee, M.R.; Hosseinzadeh, K.; Ganj, D.D. Investigation of three-dimensional hybrid nanofluid flow affected by nonuniform MHD over exponential stretching/shrinking plate. Nonlinear Eng. 2022, 11, 143–155. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M.; Pop, I. Heat and mass transfer of unsteady natural convection flow of some nanofluids past a vertical infinite flat plate with radiation effect. Int. J. Heat Mass Transf. 2013, 59, 167–171. [Google Scholar] [CrossRef]
- Turkyilmazoglu, M. On the transparent effects of Buongiorno nanofluid model on heat and mass transfer. Eur. Phys. J. Plus 2021, 136, 1–15. [Google Scholar] [CrossRef]
- Algehyne, E.A.; Alharbi, A.F.; Saeed, A.; Dawar, A.; Ramzan, M.; Kumam, P. Analysis of the MHD partially ionized GO-Ag/water and GO-Ag/kerosene oil hybrid nanofluids flow over a stretching surface with Cattaneo–Christov double diffusion model: A comparative study. Int. Commun. Heat Mass Transf. 2022, 136, 106205. [Google Scholar] [CrossRef]
- Ahmad, S.; Ali, K.; Ashraf, M.; Jamshed, W. Thermal Characteristics of Kerosene Oil based Hybrid Nanofluids (Ag-MnZnFe2O4): A Comprehensive Study. Front. Energy Res. 2022, 10, 978819. [Google Scholar] [CrossRef]
- Liao, S.J. The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992. [Google Scholar]
- Liao, S. Homotopy analysis method: A new analytical technique for nonlinear problems. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 95–100. [Google Scholar] [CrossRef]
- Liao, S. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 2003–2016. [Google Scholar] [CrossRef]
Properties | Ag | CuO | Kerosene Oil |
---|---|---|---|
429 | 18 | 0.145 | |
235 | 540 | 2090 | |
10,500 | 6500 | 783 |
n | ||||
---|---|---|---|---|
2 | ||||
5 | ||||
10 | ||||
15 | ||||
20 | ||||
25 | ||||
30 |
0.2 | 0.4 | 0.6 | 0.8 | 1.0 | |
---|---|---|---|---|---|
−1.04025 | −1.07483 | −1.09753 | −1.11643 | −1.16989 | |
−2.35546 | −1.99025 | −1.50623 | −1.31678 | −1.17889 |
0.0 | 0.2 | 0.4 | 0.6 | 0.8 | |
---|---|---|---|---|---|
−0.52003 | −0.52098 | −0.52941 | −0.53452 | −0.53742 | |
−0.51341 | −0.51661 | −0.51946 | −0.52367 | −0.53854 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ZeinEldin, R.A.; Ullah, A.; Khalifa, H.A.E.-W.; Ayaz, M. Analytical Study of the Energy Loss Reduction during Three-Dimensional Engine Oil-Based Hybrid Nanofluid Flow by Using Cattaneo–Christov Model. Symmetry 2023, 15, 166. https://doi.org/10.3390/sym15010166
ZeinEldin RA, Ullah A, Khalifa HAE-W, Ayaz M. Analytical Study of the Energy Loss Reduction during Three-Dimensional Engine Oil-Based Hybrid Nanofluid Flow by Using Cattaneo–Christov Model. Symmetry. 2023; 15(1):166. https://doi.org/10.3390/sym15010166
Chicago/Turabian StyleZeinEldin, Ramadan A., Asad Ullah, Hamiden Abd El-Wahed Khalifa, and Muhammad Ayaz. 2023. "Analytical Study of the Energy Loss Reduction during Three-Dimensional Engine Oil-Based Hybrid Nanofluid Flow by Using Cattaneo–Christov Model" Symmetry 15, no. 1: 166. https://doi.org/10.3390/sym15010166
APA StyleZeinEldin, R. A., Ullah, A., Khalifa, H. A. E. -W., & Ayaz, M. (2023). Analytical Study of the Energy Loss Reduction during Three-Dimensional Engine Oil-Based Hybrid Nanofluid Flow by Using Cattaneo–Christov Model. Symmetry, 15(1), 166. https://doi.org/10.3390/sym15010166