A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications
Abstract
:1. Introduction
2. Motivation and Structural Design
3. Simulation Results and Discussions
4. Detection of Harmful Gases
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Silveirinha, M.; Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials. Phys. Rev. Lett. 2006, 97, 157403. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S.; Dutta, P.; Jha, A.V.; Appasani, B.; Khan, M.S. A Biomedical Sensor for Detection of Cancer Cells Based on Terahertz Metamaterial Absorber. IEEE Sensors Lett. 2022, 6, 1–4. [Google Scholar] [CrossRef]
- Larkins, E.C.; Harris, J.S. 2-Molecular Beam Epitaxy of High-Quality GaAs and AlGaAs; Molecular Beam Epitaxy; Farrow, R.F.C., Ed.; William Andrew Publishing: Norwich, NY, USA, 1995; pp. 114–274. [Google Scholar] [CrossRef]
- Tani, M.; Matsuura, S.; Sakai, K.; Nakashima, S.I. Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs. Appl. Opt. 1997, 36, 7853–7859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molter, D.; Klier, J.; Weber, S.; Kolano, M.; Jonuscheit, J.; von Freymann, G. Two decades of terahertz cross-correlation spectroscopy. Appl. Phys. Rev. 2021, 8, 021311. [Google Scholar] [CrossRef]
- Zeranska-Chudek, K.; Siemion, A.; Palka, N.; Mdarhri, A.; Elaboudi, I.; Brosseau, C.; Zdrojek, M. Terahertz Shielding Properties of Carbon Black Based Polymer Nanocomposites. Materials 2021, 14, 835. [Google Scholar] [CrossRef]
- Petrova, I.; Konopsky, V.; Nabiev, I.; Sukhanova, A. Label-Free Flow Multiplex Biosensing via Photonic Crystal Surface Mode Detection. Sci. Rep. 2019, 9, 8745. [Google Scholar] [CrossRef] [Green Version]
- Ahn, Y.H.; Park, S.J. THz metamaterials for label-free microbial detection. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; pp. 1–2. [Google Scholar] [CrossRef]
- Ma, L.; Cui, Z.; Zhu, D.; Yue, L.; Hou, L.; Wang, Y. Metamaterials Sensor Based on Multiband Terahertz Absorber. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019; pp. 1–2. [Google Scholar] [CrossRef]
- Yan, Z.; Tang, C.; Wu, G.; Tang, Y.; Gu, P.; Chen, J.; Liu, Z.; Huang, Z. Perfect Absorption and Refractive-Index Sensing by Metasurfaces Composed of Cross-Shaped Hole Arrays in Metal Substrate. Nanomaterials 2021, 11, 63. [Google Scholar] [CrossRef]
- Yan, D.; Li, X.; Ma, C.; Qiu, G.; Cao, M.; Li, J.; Guo, S. Terahertz Refractive Index Sensing Based on Gradient Metasurface Coupled Confined Spoof Surface Plasmon Polaritons Mode. IEEE Sens. J. 2022, 22, 324–329. [Google Scholar] [CrossRef]
- Monfared, Y.E.; Qasymeh, M. Graphene-assisted infrared plasmonic metamaterial absorber for gas detection. Results Phys. 2021, 23, 103986. [Google Scholar] [CrossRef]
- Akimoto, H. Global Air Quality and Pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escobedo, P.; Fernández-Ramos, M.D.; López-Ruiz, N.; Moyano-Rodríguez, O.; Martínez-Olmos, A.; Pérez de Vargas-Sansalvador, I.M.; Carvajal, M.A.; Capitán-Vallvey, L.F.; Palma, A.J. Smart facemask for wireless CO2 monitoring. Nat. Commun. 2022, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cdc.gov/niosh/topics/chloroform/default.html (accessed on 15 May 2022).
- Wu, D.; Liu, Y.; Li, R.; Chen, L.; Ma, R.; Liu, C.; Ye, H. Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor. Nanoscale Res. Lett. 2016, 11, 483. [Google Scholar] [CrossRef] [Green Version]
- Stanley, R. Plasmonics in the mid-infrared. Nature Photon 2012, 6, 409–411. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.Y.; Xie, J. High sensitivity refractive index sensor based on metamaterial absorber. Prog. Electromagn. Res. M 2018, 71, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Nickpay, M.R.; Danaie, M.; Shahzadi, A. Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics 2021, 17, 237–248. [Google Scholar] [CrossRef]
- Banerjee, S.; Nath, U.; Jha, A.V.; Pahadsingh, S.; Appasani, B.; Bizon, N.; Srinivasulu, A. A Terahertz Metamaterial Absorber Based Refractive Index Sensor with High Quality Factor. In Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania, 1–3 July 2021; pp. 1–4. [Google Scholar]
- Banerjee, S.; Nath, U.; Dutta, P.; Jha, A.V.; Appasani, B.; Bizon, N. A Theoretical Terahertz Metamaterial Absorber Structure with a High Quality Factor Using Two Circular Ring Resonators for Biomedical Sensing. Inventions 2021, 6, 78. [Google Scholar] [CrossRef]
- Banerjee, S.; Dutta, P.; Jha AK, V.; Tripati, P.R.; Srinivasulu, A.; Appasani, B.; Ravariu, C. A triple band highly sensitive refractive index sensor using terahertz metamaterial perfect absorber. Prog. Electromagn. Res. M 2022, 107, 13–23. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, T.; Lin, Y. Design of electrostatically tunable terahertz metamaterial with polarization-dependent sensing characteristic. Results Phys. 2021, 29, 104798. [Google Scholar] [CrossRef]
- Sabah, C.; Urbani, F. Experimental analysis of Λ-shaped magnetic resonator for mu-negative metamaterials. Opt. Commun. 2013, 294, 409–413. [Google Scholar] [CrossRef]
- Zivieri, R. Dynamic negative permeability in a lossless ferromagnetic medium. In Proceedings of the 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Oxford, UK, 7–12 September 2015; pp. 532–534. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
- Hajesmaeili, H.N.; Zamani, M.; Zandi, M.H. Bi-gyrotropic single-negative magnetic materials in the presence of longitudinal magnetization: A transfer matrix approach. Photonics Nanostruct.-Fundam. Appl. 2017, 24, 69–75. [Google Scholar] [CrossRef]
- Boardman, A.; King, N.; Rapoport, Y.; Velasco, L. Gyrotropic impact upon negatively refracting surfaces. New J. Phys. 2005, 7, 191. [Google Scholar] [CrossRef]
- Li, L.; Liang, Y.; Guang, J.; Cui, W.; Zhang, X.; Masson, J.; Peng, W. Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor. Opt. Express 2017, 25, 26950–26957. [Google Scholar] [CrossRef] [PubMed]
- Yahiaoui, R.; Strikwerda, A.C.; Jepsen, P.U. Terahertz Plasmonic Structure with Enhanced Sensing Capabilities. IEEE Sens. J. 2016, 16, 2484–2488. [Google Scholar] [CrossRef] [Green Version]
- Maleki, M.; Mehran, M.; Mokhtari, A. Design of a near-infrared plasmonic gas sensor based on graphene nanogratings. J. Opt. Soc. Am. B 2020, 37, 3478–3486. [Google Scholar] [CrossRef]
- Monfared, Y.E.; Hajati, M.; Liang, C.; Yang, S.; Qasymeh, M. Quasi-D-Shaped Fiber Optic Plasmonic Biosensor for High-Index Analyte Detection. IEEE Sens. J. 2021, 21, 17–23. [Google Scholar] [CrossRef]
- Appasani, B.; Srinivasulu, A.; Ravariu, C. A high Q terahertz metamaterial absorber using concentric elliptical ring resonators for harmful gas sensing applications. Def. Technol. 2022; in press. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Mohanty, A.; Acharya, O.P.; Appasani, B.; Khan, M.S.; Mohapatra, S.K.; Muhammadsharif, F.F.; Dong, J. A Review on Metamaterial Absorbers: Microwave to Optical. Front. Phys. 2022, 10, 359. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Altintas, O.; Karim, A.S.; Awl, H.N.; Muhammadsharif, F.F.; Alkurt, F.; Bakir, M.; Appasani, B.; Karaaslan, M.; Dong, J. Highly Sensitive Dual-Band Terahertz Metamaterial Absorber for Biomedical Applications: Simulation and Experiment. ACS Omega 2022, 7, 38094–38104. [Google Scholar] [CrossRef]
- Abdulkarim, Y.I.; Xiao, M.; Awl, H.N.; Muhammadsharif, F.F.; Lang, T.; Saeed, S.R.; Alkurt, F.; Bakır, M.; Karaaslan, M.; Dong, J. Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate. Opt. Mater. Express 2022, 12, 338–359. [Google Scholar] [CrossRef]
- Appasani, B. A hybrid terahertz metamaterial sensor using a hexagonal ring resonator with bio-medical applications. Plasmonics 2022, 17, 519–524. [Google Scholar] [CrossRef]
- Appasani, B. An Octaband Temperature Tunable Terahertz Metamaterial Absorber Using Tapered Triangular Structures. Prog. Electromagn. Res. Lett. 2021, 95, 9–16. [Google Scholar] [CrossRef]
- Deng, G.; Xia, T.; Yang, J.; Yin, Z. Triple-band polarisation-independent metamaterial absorber at mm wave frequency band. IET Microw. Antennas Propag. 2018, 12, 1120–1125. [Google Scholar] [CrossRef]
- Zerrad, F.E.; Taouzari, M.; Makroum, E.M.; Islam, M.T.; Özkaner, V.; Abdulkarim, Y.I.; Karaaslan, M. Multilayered metamaterials array antenna based on artificial magnetic conductor’s structure for the application diagnostic breast cancer detection with microwave imaging. Med. Eng. Phys. 2022, 99, 103737. [Google Scholar] [CrossRef] [PubMed]
- Mazare, A.G.; Abdulkarim, Y.I.; Karim, A.S.; Bakır, M.; Taouzari, M.; Muhammadsharif, F.F.; Appasani, B.; Altıntaş, O.; Karaaslan, M.; Bizon, N. Enhanced Sensing Capacity of Terahertz Triple-Band Metamaterials Absorber Based on Pythagorean Fractal Geometry. Materials 2022, 15, 6364. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zhu, J.; Wu, L.; You, Q.; Ruan, B.; Dai, X. Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photonics 2018, 10, 6800507. [Google Scholar] [CrossRef]
- Available online: https://www.jacobnie.com/physics/atm_img/kay.html (accessed on 6 October 2022).
- Parent, M. An Exposure Assessment Study of Volatile Organic Compounds (Vocs) In Residential Indoor Environment Using the Canadian Health Measures Survey (Cycle 2: 2009–2011) and a Multiple Receptors Based Approach. 2018. Available online: https://dalspace.library.dal.ca/xmlui/handle/10222/74099 (accessed on 20 November 2022).
Reference No. | Q-Factor | Sensitivity (GHz/RIU) | FoM (/RIU) | Polarization Sensitive | Peak Absorption | Application in Gas Sensing |
---|---|---|---|---|---|---|
[19] | 78.90 | 0.3537 | 11.0531 | Yes | 90% | No |
[20] | 13.76 | 851 | 2.927 | No | 99.75% | No |
[21] | 32.167 | 187 | 6.015 | Yes | 99.8% | No |
[22] | 44 | 1500 | 25 | Yes | 99.5% | No |
[23] | 29.5, 66.8, 59.4 | 540, 700, 1500 | 6.75, 17.5, 30 | Yes | 99% | No |
[24] | 231 | 186 | 187 | Yes | 97% | No |
This paper | 145.25 | 2120 | 106 | Yes | 99.65% | Yes |
Serial No. | Refractive Index (n) | Absorption (%) |
---|---|---|
1 | 1.00 | 99.65 |
2 | 1.005 | 97.75 |
3 | 1.01 | 99.50 |
4 | 1.015 | 99.00 |
5 | 1.02 | 98.75 |
6 | 1.025 | 98.25 |
7 | 1.03 | 98.25 |
8 | 1.035 | 97.50 |
9 | 1.04 | 98.00 |
10 | 1.045 | 98.50 |
11 | 1.05 | 98.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S.; Dutta, P.; Basu, S.; Mishra, S.K.; Appasani, B.; Nanda, S.; Abdulkarim, Y.I.; Muhammadsharif, F.F.; Dong, J.; Jha, A.V.; et al. A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications. Symmetry 2023, 15, 24. https://doi.org/10.3390/sym15010024
Banerjee S, Dutta P, Basu S, Mishra SK, Appasani B, Nanda S, Abdulkarim YI, Muhammadsharif FF, Dong J, Jha AV, et al. A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications. Symmetry. 2023; 15(1):24. https://doi.org/10.3390/sym15010024
Chicago/Turabian StyleBanerjee, Sagnik, Purba Dutta, Snehashish Basu, Sunil Kumar Mishra, Bhargav Appasani, Sarita Nanda, Yadgar I. Abdulkarim, Fahmi F. Muhammadsharif, Jian Dong, Amitkumar V. Jha, and et al. 2023. "A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications" Symmetry 15, no. 1: 24. https://doi.org/10.3390/sym15010024
APA StyleBanerjee, S., Dutta, P., Basu, S., Mishra, S. K., Appasani, B., Nanda, S., Abdulkarim, Y. I., Muhammadsharif, F. F., Dong, J., Jha, A. V., Bizon, N., & Thounthong, P. (2023). A New Design of a Terahertz Metamaterial Absorber for Gas Sensing Applications. Symmetry, 15(1), 24. https://doi.org/10.3390/sym15010024