On Thermodynamically Consistent Quasiparticle Model at Finite Chemical Potential †
Abstract
:1. Introduction
2. The Generalized Condition for Thermodynamical Consistency
3. Bottom-Up Toy Model Approaches
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karsch, F. Lattice QCD at high temperature and density. Lect. Notes Phys. 2002, 583, 209. [Google Scholar]
- Hwa, R.C.; Wang, X.N. (Eds.) Quark-Gluon Plasma 3; World Scientific: Singapore, 2004. [Google Scholar]
- Florkowski, W.; Heller, M.P.; Spalinski, M. New theories of relativistic hydrodynamics in the LHC era. Rept. Prog. Phys. 2018, 81, 046001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hama, Y.; Kodama, T.; Socolowski, O., Jr. Topics on hydrodynamic model of nucleus-nucleus collisions. Braz. J. Phys. 2005, 35, 24. [Google Scholar] [CrossRef] [Green Version]
- de Souza, R.D.; Koide, T.; Kodama, T. Hydrodynamic Approaches in Relativistic Heavy Ion Reactions. Prog. Part. Nucl. Phys. 2016, 86, 35. [Google Scholar] [CrossRef] [Green Version]
- Hama, Y.; Kodama, T.; Qian, W.-L. Two-particle correlations at high-energy nuclear collisions, peripheral-tube model revisited. J. Phys. 2021, G48, 015104. [Google Scholar] [CrossRef]
- Qian, W.-L.; Andrade, R.; Socolowsk, O., Jr.; Grassi, F.; Kodama, T.; Hama, Y. p(T) distribution of hyperons in 200-A-GeV Au-Au in smoothed particle hydrodynamics. Braz. J. Phys. 2007, 37, 767. [Google Scholar] [CrossRef] [Green Version]
- Qian, W.L.; Andrade, R.; Grassi, F.; Socolowski, O., Jr.; Kodama, T.; Hama, Y. Effect of chemical freeze out on identified particle spectra at 200-A-GeV Au-Au Collisions at RHIC using SPheRIO. Int. J. Mod. Phys. 2007, E16, 1877. [Google Scholar] [CrossRef] [Green Version]
- Hama, Y.; Andrade, R.P.G.; Grassi, F.; Qian, W.L.; Kodama, T. Fluctuation of the Initial Conditions and Its Consequences on Some Observables. Acta Phys. Polon. B 2009, 40, 931. [Google Scholar]
- Andrade, R.; Grassi, F.; Hama, Y.; Qian, W.-L. A Closer look at the influence of tubular initial conditions on two-particle correlations. J. Phys. G 2010, G37, 094043. [Google Scholar] [CrossRef]
- Andrade, R.P.G.; Grassi, F.; Hama, Y.; Qian, W.-L. Temporal evolution of tubular initial conditions and their influence on two-particle correlations in relativistic nuclear collisions. Phys. Lett. 2012, B712, 226. [Google Scholar] [CrossRef] [Green Version]
- Andrade, R.; Grassi, F.; Hama, Y.; Qian, W.-L. Hydrodynamics: Fluctuating Initial Conditions and Two-particle Correlations. Nucl. Phys. 2011, A854, 81. [Google Scholar] [CrossRef] [Green Version]
- Castilho, W.M.; Qian, W.-L.; Gardim, F.G.; Hama, Y.; Kodama, T. Hydrodynamic approach to the centrality dependence of di-hadron correlations. Phys. Rev. 2017, C95, 064908. [Google Scholar] [CrossRef]
- Castilho, W.M.; Qian, W.-L.; Hama, Y.; Kodama, T. Event-plane dependent di-hadron correlations with harmonic vn subtraction in a hydrodynamic model. Phys. Lett. 2018, B777, 369. [Google Scholar] [CrossRef]
- Wen, D.; Lin, K.; Qian, W.L.; Wang, B.; Hama, Y.; Kodama, T. On nonlinearity in hydrodynamic response to the initial geometry in relativistic heavy-ion collisions. Eur. Phys. J. 2020, A56, 222. [Google Scholar] [CrossRef]
- Fowler, G.; Raha, S.; Weiner, R. CONFINEMENT AND PHASE TRANSITIONS. Z. Phys. 1981, C9, 271. [Google Scholar] [CrossRef]
- Peshier, A.; Kampfer, B.; Pavlenko, O.P.; Soff, G. An Effective model of the quark - gluon plasma with thermal parton masses. Phys. Lett. 1994, B337, 235. [Google Scholar] [CrossRef] [Green Version]
- Ginsparg, P.H. First Order and Second Order Phase Transitions in Gauge Theories at Finite Temperature. Nucl. Phys. 1980, B170, 388. [Google Scholar] [CrossRef]
- Pisarski, R.D. Renormalized Gauge Propagator in Hot Gauge Theories. Physica 1989, A158, 146. [Google Scholar] [CrossRef]
- Pisarski, R.D. Quark gluon plasma as a condensate of SU(3) Wilson lines. Phys. Rev. 2000, D62, 111501. [Google Scholar]
- Asakawa, M.; Ko, C.M. Seeing the QCD phase transition with phi mesons. Phys. Lett. 1994, B322, 33. [Google Scholar] [CrossRef] [Green Version]
- Gorenstein, M.I.; Yang, S.-N. Gluon plasma with a medium dependent dispersion relation. Phys. Rev. 1995, D52, 5206. [Google Scholar] [CrossRef] [PubMed]
- Peshier, A.; Kampfer, B.; Soff, G. The Equation of state of deconfined matter at finite chemical potential in a quasiparticle description. Phys. Rev. 2000, C61, 045203. [Google Scholar] [CrossRef] [Green Version]
- Peshier, A.; Kampfer, B.; Soff, G. From QCD lattice calculations to the equation of state of quark matter. Phys. Rev. 2002, D66, 094003. [Google Scholar] [CrossRef]
- Bluhm, M.; Kampfer, B.; Soff, G. The QCD equation of state near T(c) within a quasi-particle model. Phys. Lett. 2005, B620, 131. [Google Scholar] [CrossRef] [Green Version]
- Biro, T.S.; Shanenko, A.A.; Toneev, V.D. Towards thermodynamical consistency of quasiparticle picture. Phys. Atom. Nucl. 2003, 66, 982. [Google Scholar] [CrossRef] [Green Version]
- Bannur, V.M. Comments on quasiparticle models of quark-gluon plasma. Phys. Lett. 2007, B647, 271. [Google Scholar] [CrossRef] [Green Version]
- Wang, P. Strange matter in a selfconsistent quark mass density dependent model. Phys. Rev. C 2000, 62, 015204. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, R.-K.; Ying, S.-Q.; Wang, P. Quark mass density and temperature dependent model for strange quark matter. EPL 2001, 53, 361. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Su, R.-K. Quark mass density and temperature dependent model for bulk strange quark matter. Phys. Rev. C 2002, 65, 035202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Su, R.-K. Stability of strangelet at finite temperature. Phys. Rev. C 2003, 67, 015202. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Su, R.-K. Dibaryon systems in the quark mass density and temperature dependent model. J. Phys. G 2004, 30, 811. [Google Scholar] [CrossRef]
- Qian, W.L.; Su, R.-K.; Song, H.Q. Warm strange hadronic matter in an effective model with a weak Y-Y interaction. J. Phys. 2004, G30, 1893. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Qian, W.L.; Su, R.-K. Improved quark mass density- dependent model with quark and non-linear scalar field coupling. Phys. Rev. C 2005, 72, 035205. [Google Scholar] [CrossRef]
- Wu, C.; Qian, W.-L.; Su, R.-K. Improved quark mass density- dependent model with quark-sigma meson and quark-omega meson couplings. Phys. Rev. C 2008, 77, 015203. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Su, R.-K. Quark deconfinement phase transition for improved quark mass density-dependent model. J. Phys. G 2008, 35, 125001. [Google Scholar] [CrossRef]
- Wu, C.; Su, R.-K. Nuclear matter and neutron matter for improved quark mass density- dependent model with rho mesons. J. Phys. G 2009, 36, 095101. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Su, R.-K.; Zhao, W.-Q. Soliton solutions of the improved quark mass density-dependent model at finite temperature. Phys. Rev. 2006, C74, 055204. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Su, R.-K. Thermodynamics of system with density- and/or temperature-dependent mass particles. arXiv 2007, arXiv:0704.3689. [Google Scholar]
- Yin, S.; Su, R.-K. The Intrinsic degree of freedom for quasiparticle in thermodynamics with medium effects. arXiv 2007, arXiv:0709.0179. [Google Scholar]
- Yin, S.; Su, R.-K. Consistent thermodynamic treatment for a quark-mass density-dependent model. Phys. Rev. 2008, C77, 055204. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Su, R.-K. Consistent Thermodynamics for Quasiparticle Boson System with Zero Chemical Potential. Int. J. Mod. Phys. 2010, A25, 1449. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.-H.; Qian, W.-L. A quasiparticle equation of state with a phenomenological critical point. Braz. J. Phys. 2018, 48, 160. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.-H.; Lin, K.; Qian, W.-L.; Hama, Y.; Kodama, T. Thermodynamical consistency of quasiparticle model at finite baryon density. Phys. Rev. 2019, C100, 015206. [Google Scholar] [CrossRef] [Green Version]
- Friedberg, R.; Lee, T.D. Fermion Field Nontopological Solitons. 1. Phys. Rev. D 1977, 15, 1694. [Google Scholar] [CrossRef]
- Friedberg, R.; Lee, T.D. Fermion Field Nontopological Solitons. 2. Models for Hadrons. Phys. Rev. D 1977, 16, 1096. [Google Scholar] [CrossRef]
- Goldflam, R.; Wilets, L. The Soliton Bag Model. Phys. Rev. D 1982, 25, 1951. [Google Scholar] [CrossRef]
- Flechsig, F.; Rebhan, A.K.; Schulz, H. The Infrared sensitivity of screening and damping in a quark-gluon plasma. Phys. Rev. 1995, D52, 2994. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, M.; Kampfer, B.; Schulze, R.; Seipt, D.; Heinz, U. A family of equations of state based on lattice QCD: Impact on flow in ultrarelativistic heavy-ion collisions. Phys. Rev. 2007, C76, 034901. [Google Scholar] [CrossRef] [Green Version]
- Pathria, R.K. Statistical Mechanics; Butterworth-Heinemann: Oxford, UK, 1996. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics, 1st ed.; Wiley-Interscience: Hoboken, NJ, USA, 1989. [Google Scholar]
- Borsanyi, S.; Fodor, Z.; Katz, S.D.; Krieg, S.; Ratti, C.; Szabó, K. Fluctuations of conserved charges at finite temperature from lattice QCD. J. High Energy Phys. 2012, 1, 138. [Google Scholar] [CrossRef] [Green Version]
- Borsányi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Szabo, K.K. Full result for the QCD equation of state with 2+1 flavors. Phys. Lett. 2014, B730, 99. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A.; Bhattacharya, T.; DeTar, C.E.; Ding, H.T.; Gottlieb, S.; Gupta, R.; Hegde, P.; Heller, U.M.; Karsch, F.; Laermann, E.; et al. Fluctuations and Correlations of net baryon number, electric charge, and strangeness: A comparison of lattice QCD results with the hadron resonance gas model. Phys. Rev. 2012, D86, 034509. [Google Scholar] [CrossRef] [Green Version]
- Katz, S.D. Equation of state from lattice QCD. Nucl. Phys. 2006, A774, 159. [Google Scholar] [CrossRef] [Green Version]
- Bazavov, A.; Ding, H.T.; Hegde, P.; Kaczmarek, O.; Karsch, F.; Laermann, E.; Maezawa, Y.; Mukherjee, S.; Ohno, H.; Petreczky, P.; et al. The QCD Equation of State to O(μB6) from Lattice QCD. Phys. Rev. 2017, D95, 054504. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, M.; Kampfer, B.; Schulze, R.; Seipt, D. Quasi-Particle Description of Strongly Interacting Matter: Towards a Foundation. Eur. Phys. J. 2007, C49, 205. [Google Scholar] [CrossRef]
- Dudal, D.; Gracey, J.A.; Sorella, S.P.; Vandersickel, N.; Verschelde, H. A Refinement of the Gribov-Zwanziger approach in the Landau gauge: Infrared propagators in harmony with the lattice results. Phys. Rev. 2008, D78, 065047. [Google Scholar] [CrossRef]
- Dudal, D.; Sorella, S.P.; Vandersickel, N. The dynamical origin of the refinement of the Gribov-Zwanziger theory. Phys. Rev. 2011, D84, 065039. [Google Scholar] [CrossRef] [Green Version]
- Cucchieri, A.; Dudal, D.; Mendes, T.; Vandersickel, N. Modeling the Gluon Propagator in Landau Gauge: Lattice Estimates of Pole Masses and Dimension-Two Condensates. Phys. Rev. 2012, D85, 094513. [Google Scholar] [CrossRef] [Green Version]
- Capri, M.A.; Dudal, D.; Pereira, A.D.; Fiorentini, D.; Guimaraes, M.S.; Mintz, B.W.; Palhares, L.F.; Sorella, S.P. Nonperturbative aspects of Euclidean Yang-Mills theories in linear covariant gauges: Nielsen identities and a BRST-invariant two-point correlation function. Phys. Rev. 2017, D95, 045011. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.; Haque, N.; Mustafa, M.G.; Strickland, M. Dilepton rate and quark number susceptibility with the Gribov action. Phys. Rev. 2016, D93, 065004. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, A.C.; Binosi, D.; Papavassiliou, J. The Gluon Mass Generation Mechanism: A Concise Primer. Front. Phys. 2016, 11, 111203. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, A.C.; Papavassiliou, J. Chiral symmetry breaking with lattice propagators. Phys. Rev. 2011, D83, 014013. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, A.C.; Cardona, J.C.; Ferreira, M.N.; Papavassiliou, J. Quark gap equation with non-abelian Ball-Chiu vertex. arXiv 2018, arXiv:1804.04229. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, W.-L.; Ma, H.-H.; Yin, S.; Wang, P. On Thermodynamically Consistent Quasiparticle Model at Finite Chemical Potential. Symmetry 2023, 15, 241. https://doi.org/10.3390/sym15010241
Qian W-L, Ma H-H, Yin S, Wang P. On Thermodynamically Consistent Quasiparticle Model at Finite Chemical Potential. Symmetry. 2023; 15(1):241. https://doi.org/10.3390/sym15010241
Chicago/Turabian StyleQian, Wei-Liang, Hong-Hao Ma, Shaoyu Yin, and Ping Wang. 2023. "On Thermodynamically Consistent Quasiparticle Model at Finite Chemical Potential" Symmetry 15, no. 1: 241. https://doi.org/10.3390/sym15010241
APA StyleQian, W. -L., Ma, H. -H., Yin, S., & Wang, P. (2023). On Thermodynamically Consistent Quasiparticle Model at Finite Chemical Potential. Symmetry, 15(1), 241. https://doi.org/10.3390/sym15010241